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Abstract 

In this paper it is shown how to calculate flutter speed on the example of the 
Great Belt East Bridge in Denmark. Two numerical approaches are shown for 
prediction of the aeroelastic phenomena on bridges. In the computational fluid 
dynamics (CFD) simulation turbulence model based on Reynolds Average 
Navies Stokes (RANS) approach, two-equation shear stress turbulence (SST) 
models were chosen. Although the SST model needs more computer resources 
compared to the k-ω and k-ε models, it is still affordable with multi-processing 
personal computers. In this paper extracted flutter derivatives in the force 
vibration procedure are shown. Flutter derivatives are later used in the hybrid 
method of flutter. Final flutter speed was calculated based on flutter derivatives 
from fluid structure interaction extraction and experimental extraction. Flutter 
velocity was also determined with a free vibration of deck at the middle of the 
bridge. The deck section of unit length was clamped into springs and dampers.  
Flutter speed was reached with time increasing of wind speed until large 
oscillations occurred. The general procedure of how to formulate the fluid 
structure interaction and necessary stapes for flutter analysis of the bridge is 
shown in this paper. Numerically extracted flutter derivatives are compared 
based on the final flutter speed to experimental measurements of the deck 
section. 
Keywords: bridge aeroelasticity, long span bridge, flutter derivatives, numerical 
simulation, fluid structure interaction, computational fluid dynamics. 
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1 Bridge aeroelasticity 

The aeroelastic stability of line-like slender structures, such as suspension and 
cable-stay bridges is verified by calculating the critical wind speed. Light 
structures are sensitive to aeroelastic phenomena like galloping, divergence and 
flutter. Therefore the aeroelastic properties of the bridge deck section are needed 
and are commonly determined in wind tunnel tests. The bridge structural 
parameters have to be calculated and, furthermore, more aeroelastic parameters 
must be measured. The phase of projecting flutter speed can be estimated fully 
with a computational approach. In general, aeroelastic studies are time 
consuming and quicker calculations could be done with fluid structure 
interaction (FSI) analysis. For an aeroelastic response in the hybrid method we 
need linearized flutter derivatives to close dynamic equations and the dynamic 
response of structure. The hybrid method is a very useful tool for optimization, 
sensitivity analysis and flutter speed calculations. A multimodal response could 
be captured, but in our example we captured only the vertical and torsional 
degree of freedom. Two different methods exist for the extraction of flutter 
derivatives – free and forced vibration testing. For our investigation, the force 
vibration test was simulated with commercial software Ansys 14 for 
computational fluid dynamics (CFD). A presentation of extraction of flutter 
derivatives will be presented by FSI simulation with a force vibration test. 
Results of flutter derivatives will be imported into the hybrid method for 
calculating the flutter speed. The second possibility is to cut a unit length of 
bridge deck segment at one-quarter or one-half of the bridge and investigate the 
aeroelastic response. We clamped the segment in springs, dampers and assigned 
a proper modal mass for chosen frequencies. Under different wind velocities we 
observed oscillations of the deck. Independent from hybrid results in frequency 
domain, a time domain FSI was calculated for the clamped deck section. 

2 Flutter 

It is shown that the fundamental torsional vibration mode dominantly involves 
flutter instability for bluff cross sections like low slenderness ratio (B/D) 
rectangular sections or H-shape sections or stiffened truss sections. The flutter 
instability [1] is known as the torsional flutter, as in the case of Tacoma Narrow 
failure, whereas the fundamental torsional mode and any first symmetric or 
asymmetric heaving mode usually couples mechanically at single frequency with 
the streamlined cross sections known as the coupled flutter or the classical 
flutter. Coupled flutter was studied previously on the aerodynamics of airplane’s 
airfoil wings and later developed for bridge line-like structures. It is interesting 
that the coupled flutter has occurred in the case of the Great Belt East Bridge in 
Denmark with a streamlined deck section. The following section will describe 
basic equations of flutter, based on which later flutter speed is calculated. 
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2.1 Equations of flutter 

Aeroelastic forces are linearized as a function of the movements and speeds of 
the board, analogously to the forces occurring in the Theodorsen theory [2]. The 
expressions for lift ܨ௭ and the moment ܨఏ forces are 
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where ܸ is the average wind speed, ܤ is the width of the section, ρ is the density 
of air and ܭ  ൌ  ߱ is the reduced frequency. Circular frequency is ܸ/ܤ߱ ൌ  ݂ߨ2 
in units ሾݏ/݀ܽݎሿ  and the frequency ݂ units are in ሾ1/ݏሿ. So called flutter 
derivatives ܪ

ܣ ,כ
 ݅ with כ ൌ  1 . . . 4 are functions of reduced frequency ܭ. 

Moment force ܯఏ, along the X-axis which produces torsional rotation along the 
deck. Lift force ܨ௭ causes lift of the deck and is important for flutter coupling 
between the rotational and vertical movement. Drag forces ܨ௬ are neglected for 
simplification and small participation factors to flutter speed, but can be 
important for long suspension [3]. 
     Classical flutter occurs when vertical and torsional vibrations have natural 
frequencies close together and a larger mass is activated in each mode shape. 
Heaving and torsional motion equations of the flutter, where ݖ is the vertical 
motion and ߠ the torsional motion can be expressed with following 
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where ܯ୧ is mass, ܥ୧ is structural damping and ܭ୧ is stiffness of mode i. 
Introducing ܭഥ ൌ ݏ ୧/ܸ, non-dimensional time variable߱ܤ ൌ

௧


, first order ݏሶ  

and second-order ݏሷ differentials of time we get equations of flutter 
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     The solution of the system is in determining which must be zero. The 
determinant of eqns (5) and (6) can be expanded and grouped by real and 
imaginary parts as follows 
 

Detሾܪሿ ൌ Δଵ  Δଶ݅ ൌ 0 (7) 

     As a result, the flutter motion differential equations of the heaving-torsional 
system have been transformed to two polynomial equations with ω-variable. The 
critical state of circular frequency or flutter frequency is when the sum of real 
and imaginary parts are zero [4].  

2.2 Extraction of flutter derivatives by force vibration procedure 

Considering flutter as an aeroelastic stability problem, the motion of the bridge 
deck at the stability border is assumed to be a sinusoidal motion with constant 
amplitude. For forced vibration tests of the unit length deck, a smaller scale is 
used. Pure sinusoidal oscillation according to the mathematical assumption can 
be realized. The bridge deck involves two types of deformation: bending and 
twist.  Based on the analytical theory of Theodorsen, a modified theory is 
introduced by Starossek [5, 6].  
     Mathematical expressions are used for determination of modal parameters [7, 
p. 34]. The harmonic behaviour of the system is introduced, by the use of 
expression for sinusoidal motion and exponential damping in 
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where ݕሺݐሻ is the sinusoidal lateral motion [m], ݖሺݐሻ  the vertical sinusoidal 
motion [m] and ߠሺݐሻ is the rotation [m], ߱ is the frequency [rad], ݐ is the time 
variable [s] and y, z and θ෨  are amplitudes of lateral, vertical and rotational 
movement. The forces described by the lift and moment coefficients are expected 
to vary in a similar way. A phase difference, between the motion and the load ψ 
is described by phase angle [rad] in eqns (9) and ((10). 
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     Phase angles are between 0 ൏ ψ ൏ π/2 and are calculated based on the fitted 
sinusoidal curve to each deck force and later phase difference between the 
sinusoidal motion and movement is calculated in eqn. (11).  
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2.2.1 Phase angle 
The phase angle is the delay of the load from motion. Load and motion are 
correlated as expected, as a positive clock wise rotation results in a positive 
moment and an upward lift (Figure 1). The time interval found in this particular 
case (in Figure 2) is approximately 0.35 rad for the lift and 0.12 rad for the 
moment. The phase difference is converted from time interval to radians as [7, 
p. 32] (eqn. (12)). 
 
 
 

 

Figure 1: Global coordinate system of the bridge (left), Scalan sign 
convention used in the analysis of the flutter instability (right). 

 

Figure 2: Lift force ܨ௭ and vertical oscillation ݖ for illustration of the phase 
shift for the case with a reduced velocity ܭ ൌ 10 for force 
oscillation of frequency ߱ ൌ ܸ  and wind speed ݏ/0.129 1 ൌ
 .ଵିݏ݉ 80
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where ݐ߂ is the time interval of the phase shift. Considering equation (11), the 
unknown is the phase shift ψ, which can be found with the time interval between 
the motion and the load as shown in Figure 3. 
 

 

Figure 3: Aerodynamic forces for vertical oscillation zଶ ൌ 15 m, ܭ ൌ 10, 
߱ ൌ 0.129 1/s, ܸ ൌ 80 m/s. 

     In the example flutter derivatives for vertical motion ܪଵכ, ଶܪ
,כ ଷܪ

,כ  and for כସܪ
rotational motion ܣଵכ , ଶܣ

כ , ଷܣ
כ ,  as a function of reduce frequencies K are כସܪ

calculated. Two different amplitudes were used for vertical force motion zଵ ൌ
0.05 m and zଶ ൌ 0.15 m. For rotation, θଵ ൌ 5° and θଶ ൌ 15° are used and 
compared with different phase angles. It is of main importance to calculate phase 
angels and derivatives. Results for the four most important flutter derivatives are 
shown in Figure 4.  Furthermore, phase angles are listed in Table 1 and the 
differences between amplitudes are shown in Table 2. 

Table 1:  Phase shifts ψ for rotational oscillation θଵ ൌ 5° and vertical 
oscillation zଵ ൌ 5 cm. 

Reduce frequency K 1 3 6 10 15 
Frequency of oscillation 1,290 0,430 0,215 0,129 0,086 

Lift Rotational 
oscillation 
θଵ ൌ 5° 

1,03 0,95 0,65 0,35 0,19 
Drag -0,51 -0,26 0,05 0,16 0,19 
Moment 0,39 0,17 0,16 0,12 0,09 
Lift Vertical 

oscillation 
zଵ ൌ 5 cm 

0,27 0,76 1,35 1,46 1,43 
Drag -1,44 -1,58 -1,38 -1,37 -1,39 
Moment -1,54 -1,54 -1,45 -1,44 -1,46 

 

2.2.2 Aerodynamic coefficients  

Aerodynamic coefficients are calculated in the first stage of CFD simulations. 
Aerodynamic coefficients for stationary and non-stationary simulations are very 
similar but not the same. Usually the stationary solution underestimates forces on 
 

66  Fluid Structure Interaction VII

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 129, © 2013 WIT Press



Table 2:  Difference for different amplitudes of rotational θଶ/θଵ and vertical 
zଶ/zଵ oscillation in ሾ%ሿ. 

Reduce frequency K 1 3 6 10 15 

Lift 
Rotation 

-8,79% 0,15% -0,21% -0,67% -1,39% 
Drag 12,29% -2,44% 4,99% -2,74% -2,17% 
Moment 28,77% 0,77% -0,19% -0,13% -0,01% 
Lift 

Vertical 
-40,65% 0,88% 0,05% 0,04% 7,08% 

Drag 1,25% 0,14% 0,34% -0,02% -8,70% 
Moment 0,00% 0,00% 0,00% 0,00% 0,00% 

 
 

 

Figure 4: Extracted flutter derivatives from experiments and FSI calculated 
by force vibration test. 

deck. Aerodynamic non-stationary coefficients are the result of average force in 
time. For our investigation, aerodynamic forces on deck are calculated from 
stationary simulation. The drag aerodynamic coefficient ܥ ൌ 0.044, lift 
aerodynamic coefficient ܥ ൌ 0.197 and moment aerodynamic coefficient ܥெ ൌ
0.050 are calculated from forces on the deck section at wind speed ܸ ൌ  .ݏ/݉ 80

2.3 Flutter derivatives 

The results are validated by comparison with wind tunnel tests, from ref. [8], 
focusing on the two-dimensional case. It is evident that amplitude does not 
significantly influence the results; it mostly influences the drag force. 
Instabilities of extraction were noticed also at higher amplitudes of rotations, 
where the vortex from leading travelling along the deck influenced the results. 
Flutter derivatives are compared to experimental data and it is possible to 
observe good agreement. The results are shown in Figure 4. 
     Better agreement can be reached with a 3D mesh, denser mesh and another 
more accurate turbulence model. 
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3 Direct simulation of fluid structure interaction of flutter 

Different possibilities of moving meshes are possible to define rigid body 
motion. Two examples of the mathematical model are shown in Figure 5. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Different models for FSI analysis. Model for flutter derivatives 
extraction (left), direct FSI simulation of flutter (right). 

3.1 Turbulence model 

In RANS equations instantaneous fluctuations are modelled by a closure model. 
The most popular are the one and two equation models that are computationally 
cheap. The most economic approach is RANS flow modelling for computing 
complex turbulent industrial flows. RANS models are suitable for many 
engineering applications and typically provide the level of accuracy required. 
Since none of the models is universal, the most suitable turbulent model is an 
important decision in a given application. It influences the aerodynamic force 
which strongly influences the mechanism of energy transfer into motion, while 
the dynamic turbulence force from vortex shedding does not have a big influence 
on flutter.  
     More complex RANS is the shear stress turbulence (SST) model. The 
transition SST model is based on the coupling of the SST transport equations 
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with two other transport equations; one for the intermittency and one for the 
transition onset criteria, in terms of the momentum-thickness Reynolds number. 
An ANSYS empirical correlation covers standard bypass transition as well as 
flows in low free-stream turbulence environments. In addition, a very powerful 
option is included to allow us to enter our own user-defined empirical 
correlation. It was used to control the transition onset momentum thickness 
Reynolds number equation, which was used to match results of flutter 
derivatives. The mesh of our investigation is three-dimensional, while boundary 
conditions are set in a way that the symmetry condition defines equations to 
solve two-dimensions which is computationally cheaper [9].  Computation time 
is cheaper for 2D mesh and does not have a big influence for a line-like structure 
computed in RANS models. 

3.2 Mathematical model of FSI 

For complete FSI structure interaction it is necessary to simulate all dynamical 
properties of the bridge at the observation point and all of the fluid motion 
around it. For extermination of the dynamical properties a finite element model 
(FEM) for calculation of frequencies and modal participations masses is needed. 
Fluid properties are calculated in stationary CFD analysis. Non-stationary 
simulation is important for determination of a maximal and averaged Courant 
number, which is important for a numerical stable solution.  Finally, the FSI 
model is created from a CFD file. In FSI simulation, the areas of mesh 
deformation and boundary conditions of mesh deformations are determined. The 
necessary steps for modelling of FSI of aeroelastic phenomena are described in 
Figure 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Scenario of FSI formulation of aeroelastic phenomena. 

       Simulation                FSI parameters 

Initial condition of fluid flow for 
FSI analysis. 

Modal mass, 
stiffness of springs,  
linear-viscous damping, 
equilibrium position. 

Stiffness and equations of mesh 
deformation. 

CFD stationary 
Lift, Drag and 
Moment forces 
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CFD non-stationary  
Courant 
Number, 
stability.

FEM linear  
Axial forces of 
dead load. 

Modal analysis 

Cable tension 
effect. 

FEM nonlinear  

Frequencies, 
modal shapes. 

Numerical FSI coupling scheme, 
Number of loops for fluid, 
Number of loops for dynamics of 
rigid body motion.
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     Simulation is made at 2/ܮ of the main span of the bridge. The model is 
simplified for a coordinate system of rigid body movement.  The centre of mass 
and shear centre are the origin of the shear centre. The origin of inertia forces, 
spring forces, damping and aerodynamic forces are calculated on the origin of 
the coordinate system in the shear centre. A system of two degrees of freedom is 
simulated with rigid body formulation in Ansys CEL language; modal mass, 
viscoelastic damper, and linear spring are defined in Figure 7. The results in 
Figure 8 are updated each time, when the fluid flow is calculated, rigid body 
deformation is calculated in the next loop.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Mathematical model programmed in Ansys CEL language. 

 

 

Figure 8: Aeroelastic response of the deck at the midpoint of the bridge. 

     Large oscillations occur when the wind speed is around 80 m/s. Large 
rotational and vertical movements occur until the mathematical model becomes 
unstable. Instability occurs when one of the control cells has negative volume 
and a simulation is stopped. 
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3.2.1 Finite element model  
FEM was made in software SAP2000. Cables, pylons and deck were modelled as 
line elements. Cable deformation for dead load was calculated with a SAP cable 
wizard program. Second order analysis was used for proper catching of the 
tension stiffening effect of the main cables. Because stiffness was calculated on a 
deformed FEM model it is not correct. To match correct stiffness pre-tensioning 
of main cables at the original position is done, so that dead load displacement is 
zero. Dynamical properties are considered in Figure 9 for investigation of first 
symmetric vertical mode ߱௭ ൌ 0.602 rad/s and first symmetrical torsional mode 
is ߱ ൌ 1.836 rad/s. At the centre of the bridge the first symmetrical vertical 
and first symmetrical torsional modes were investigated at the 1 m weight deck 
section.  
 

 

Figure 9: First symmetrical vertical mode 2 and symmetrical torsional  
mode 39. 

     Masses and springs for fluid structure interaction are calculated from the 
FEM model. The modal mass is calculated for the unit length of FSI 
analysis ܮிௌூ ൌ 1݉. The FEA model has a span between the two nodes ܮிாெ ൌ
25.38 ݉. Spectral displacement normalized on mass matrix from eigenvectors 
gives an activated mass at i-degree of freedom 

m
ிௌூ ൌ

ிௌூܮ ሺԄሻିଶ

ிாெܮ
 (13) 

4 Results and conclusion 

In this paper all steps of evaluating flutter speed were presented. The main 
question was the critical wind speed for this system. Our main goal was to apply 
advanced numerical programs for fluid structure interaction to asses flutter 
speed. An example of the Great Belt East Bridge was investigated to compare 
results of the two different methods. The critical wind speed was calculated in 
three different ways. The result of flutter derivatives from the experimental data 
was compared to FSI calculated flutter derivatives and the final result of flutter 
speed. The third way was the FSI analysis with the ANSYS software. The wind 
speed was increased step-by-step until the critical wind speed was found. 
Alternatively, considering the complexity of the problem, an approximation of 
2D mesh and section in the middle of the bridge as rigid-body formulation was 

 2D cut 
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investigated. First, the aerodynamic derivatives were extracted from a 2D CFD 
simulation and the critical wind speed was evaluated using an updated method 
afterwards. The critical wind speeds obtained with three different methods are in 
good agreement. The results of FSI simulation show a slightly lower value of 
wind speed, which seems to be good coincidence in this complex simulation. 
Naturally, the inflow velocity steps should be more accurate in order to capture 
the flutter speed more precisely. In addition to that, the 2D mesh should be 
extended into the 3D mesh. Also multimodal response should be captured for a 
correct estimation of flutter speed. Furthermore, the method has potential for the 
evaluating of flutter speed in phase of construction where no experimental data 
are available.   
     Extraction of flutter derivatives is in good agreement with the experimental 
data. Critical wind speed from flutter derivatives from wind tunnel testing gives 
flutter speed 91m/s and flutter derivatives from FSI extraction gives final wind 
speed 97 m/s. Flutter speed from direct FSI analysis is around 80 m/s.  
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