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Abstract 

State-space stochastic modeling (Itô-type) is employed in this study to 
numerically investigate the relevance of modeling errors in the aeroelastic 
loading on the flutter stability of a long-span bridge. The main features of the 
numerical model are: (i) linear time-domain representation of aeroelastic load 
based on indicial-function formulation, perturbed by a suitable “parametric 
error”; (ii) turbulence-induced buffeting load still retained in the dynamic 
equations; (iii) linear bridge response restricted to fundamental bending and 
torsional mode of the moving deck and cables. The flutter velocity is determined 
by using the definition of second- and third-moment stability of the random 
dynamic vector. A simplified bridge model is employed to investigate the 
feasibility of the proposed approach. Two numerical algorithms for the solution 
of stochastic stability are implemented. The comparison of the results is based on 
statistical properties of the random state vector at incipient flutter (initial time), 
which includes the “parametric error” variable. 
Keywords: long-span bridges, flutter, modeling errors, stochastic calculus, 
moment stability. 

1 Introduction 

Long-span bridges are large-period and low-damping complex structures, 
affected by wind hazards. Accurate assessment of flutter velocity is of relevance 
to the bridge designer, since this phenomenon may lead to structural collapse. 
Recent studies by the author aim at the development of numerical methods for  
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the simulation of wind-induced response of a bridge, in which random “error” 
propagation in the dynamic system of equations is incorporated. This paper 
discusses recent results of a research investigation on the estimation of critical 
flutter velocity, influenced by experimental or modeling errors in the aeroelastic 
loading.  
     An analytically-based and numerically-implemented model, based on 
stochastic calculus, has been recently proposed to assess the coupled-flutter 
stability threshold of a bridge [1,2]. The presence of “errors” was indirectly 
included through parametric perturbation to selected variables. The proposed 
approach is distinct from other methods, developed in the recent past [3–6], for 
example employing stochastic calculus to analyze the effects of turbulence on 
flutter velocity. While in previous models a perturbation of the mean wind speed 
through a random “white noise” was used to simulate turbulence effects on 
flutter, the actual buffeting loading is retained in the approach proposed herein. 
Furthermore, even though nonlinear stochastic dynamics has been recently used 
for post-critical flutter investigation [7], few studies have considered the 
quantification of random error effects, when this error is directly “embedded” in 
the unsteady self-excited forces acting on the deck. In particular, the random 
perturbation is introduced in the parameters describing the “indicial functions” 
[8] of this loading.  
     The solution to the stochastic dynamic problem is based on an augmented 
state-space system. Stability is assessed in terms of mean squares and third-order 
statistical moments [9]. The use of two techniques for the solution of the 
differential equations is presented: (i) a “Direct Euler - Monte Carlo” time 
marching algorithm [10], developed by the author to numerically calculate the 
statistical moments of the generalized modal coordinates of the deck modes; 
(ii) numerical estimation of moment Lyapunov exponents for stochastic stability 
[9]. A simulation example, modeling a realistic bridge structure, is discussed. 

2 Dynamic modeling of the bridge response: background 

A short description of the model for wind-induced analysis before the inclusion 
of random perturbation is discussed. The model is based on the “multi-mode 
approach” (e.g., [11, 12]) for aeroelastic and aerodynamic response simulation. 
Small vibration amplitudes are postulated with respect to an initial equilibrium 
configuration of the deck under mean wind loads and an initial “attack angle” α0. 
The mean cross-flow speed U acts orthogonally to the deck axis (Figure 1), since 
this direction coincides with the most unfavorable loading case. 
     The dynamic response is restricted to vertical h displacements and angular 
rotation α of the generic deck cross section (Figure 1). Effects of the lateral 
motion component are ignored. Response is represented by modal superposition 
as a function of time t, longitudinal deck coordinate x and deck width B as [11] 
 

 ( , ) ( ) ( ), ( , ) ( ) ( )g g g g
g g

h x t t Bh x x t t x       (1) 
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     A reduced-order model is constructed from the modal expansion in eqn (1). 
The dynamic response is restricted to two modes, mainly responsible for coupled 
flutter: the fundamental flexural mode (j) with hj(x) ≠ 0 in eqn (1), and the 
fundamental torsional mode (k) with αk(x) ≠ 0. 
     Lift forces (LAE, Lb) and torsional moments (MAE, Mb) in Figure 1 are included 
in the formulation by means of standard “strip theory” [11], whereas influence of 
drag forces (DAE or Db) is neglected.  
 



M=M   +M

U+u(x,t) C.G.

h
AE        b

AE      b
L=L   -L

p

B
w(x,t) D=D +D

AE     b

 

Figure 1: Aeroelastic and aerodynamic loads, degrees of freedom of the 
generic deck section - positive loading and displacement direction 
is shown. 

     Each generalized dynamic equation of mode j and k incorporates a linear 
unsteady fluid-structure interaction model, based on indicial functions (e.g., [8]). 
An indicial function (IF) models the unsteady temporal evolution of a self-
induced dimensionless force component due to a “unit-step” change in 
configuration of the deck at s=0, with s=tU/B being a dimensionless time. The 
change of configuration is related either to angular rotation or vertical velocity. 
Each IF is referenced to the corresponding value of the static force coefficient 
per unit length. 
     For example, the IF of the torsional moment MAE due to a unit-step variation 
in the angle of attack α describes the instantaneous evolution of the torque with 
respect to CM

*=dCM/dα evaluated at α0, with CM being the static torque 
coefficient [8]. This function is 

 
, ,

1

( ) 1 exp( )
m

i i
i

s c d s


  


    . (2) 

     In eqn (2) the subscript “αα” identifies coupling between aeroelastic torque 
and torsional motion; ci,αα and di,αα, are linear parameters obtained from the 
flutter derivatives (FDs), which are measured experimentally in wind tunnel 
[13]. The “link” between experimental values of the FDs and eqn (2) is based on 
nonlinear regression of ci,αα, di,αα, with pre-selected model order mαα [14]. 
Expressions similar to eqn (2) can be postulated for the IF associated with MAE 
and a variation in dh/dt (Φαh(s) with parameters CM

*, ci,αh, di,αh and order mαh), 
and for the lift-force IFs, dependent on either a step-variation of α, Φhα(s) or 
vertical velocity, Φhh(s). In the latter two cases the IFs depend on CL

*=dCL/dα at 
α0, with CL being the static lift coefficient. 
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     The combination of eqns (1) and (2), after modal superposition, leads to a pair 
of dynamic equations (for j and k). As an example, the equation of mode k is 
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 (3) 
 

     In eqn (3) the prime super-script symbol denotes derivation with respect to s, 
Φhh,0=Φhh(s=0), Φhα,0=Φhα(s=0), Φαh,0=Φαh(s=0) and Φαα,0=Φαα(s=0). Also, 
structural vibration in eqn (3) is expressed in terms of reduced frequency 
Kk=ωkB/U (with k-th mode circular frequency ωk) and damping ratio ζk. A 
dimensionless group  4

, 0.5 /
j kjk rq r q r kG B I     is used with r,q=h,α and: Ik, 

generalized modal inertia; ℓ, bridge length; *
h LC   , *

MC  . The “modal 

integrals” 
j kr qG , are defined as in [11], e.g.,

0
( ) ( ) /

j kh j kG h x x dx  


 . 

     The modal aeroelastic load in eqn (3) is represented by νae,g,rq,i and μae,g,rq,i, a 
series of i=1,...,mrq “aeroelastic states” of mode g=j or k with components 
r,q=h,α [4]. These states depend on the generalized coordinates and the IFs. 
Other state-space equations are needed [15] to describe the temporal evolution of 
νae,g,rq,i and μae,g,rq,i for the generic mode g. These can be derived [15] as: 

, , , , , , , , ,ae rq g i i rq i rq g i rq ae rq g id c d     , 
, , , , , , , , ,ae rq g i i rq i rq g i rq ae rq g id c d     . 

     The modal buffeting load is described in eqn (3) by Fb,k(s). This term is 
expressed as a linear function of zero-mean stationary turbulence components 
ˆ( ) ( ) /u s u s U  (horizontal) and ˆ ( ) ( ) /w s w s U  (vertical). Contrary to multi-

mode approach (e.g., [11]) or other standard time-domain aerodynamic modeling 
(e.g., [15]), the loading is simulated as a correlated generalized force (Lb and Mb 
in Figure 1) in terms of time s. The actual loss of load correlation is indirectly 
accounted for through dimensionless “modal span-wise correlation lengths” [1]. 
The correlation length of mode j and generalized lift (

hj
L ) and the one of mode 

k and torque (
k

L


) can be related to ˆ ( )w s  by least squares [1] as 

 1 2
2 ( | | )* 2 * 2

1 2 1 2( ) ( ) ( ) ( ) e ,wj

hj

c x x
L D L D j jC C L C C h x h x dx dx

         (4) 
 

 1 2
2 ( | | )* 2 * 2

1 2 1 2( ) ( ) e .wk

k

c x x
M M k kC L C x x dx dx


          (5) 

 

     Equations (4) and (5) are dimensionless with double integration carried out 
over ℓ; cwj and cwk are two constants (e.g., [11]); while CL

* and CM
* have been 

described above, CD is the static drag coefficient at α0. Effects of chord-wise 
aerodynamic admittance [15,16] on the aerodynamic loading are neglected. 
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3 Simulation of measurement errors in the aeroelastic loading 

The “layout” of the stochastic  state-space model [15] is derived from the 
backbone structure of eqns (3)–(5). In contrast with previous investigators ([4–6, 
17]), both sources of loading (aeroelastic, AE and buffeting, b) are retained in the 
stochastic dynamic equations, even though linear superposition of the two effects 
is still postulated (e.g., M=MAE+Mb for the torque in Figure 1). “State 
augmentation” is used [18] to allow for error propagation. A nonlinear system of 
Itô-type stochastic differential equations (SDE) [18] is derived from eqns (3)–(5) 
in terms of a random vector Z(s) and a dimensionless scalar Wiener process W(s) 
with time s. The stochastic equation [18] is: 
 

 ( ) ( ( )) 2 ( )NLd s s ds dW s Z a Z d . (6) 
 

     In eqn (6) aNL is a nonlinear function of Z(s)=[ZAE(s),ZTB(s),Δ]T with: ZTB(s) 
“wind turbulence states”, derived from generalized loading Fb,k(s) and eqns (4–
5); ZAE(s) “aeroelastic and physical states” [15,19], including the generalized 
coordinates of modes j and k, ξj(s), ξk(s), their derivatives with respect to s, ξ’j(s), 
ξ’k(s), and the quantities νae,g,rq,i and μae,g,rq,i, described above. The random 
variable Δ is independent of time and is used to simulate errors in the aeroelastic 
loading, for example emerging during the extraction of FDs in wind tunnel. 
     Equation (6) depends on initial conditions at s=0; these are imposed in terms 
of the joint-probability of Z(0) at “initial-time”, which also includes Δ.  
     The quantity d in eqn (6) is a constant vector, employed to model the 
diffusion term of the SDE, and is related to quantities pertaining to the 
turbulence-induced loads. These are ˆ( ) ( ) /u s u s U  and ˆ ( ) ( ) /w s w s U , 

introduced in Section 2; they are modeled as two independent processes, 
depending on W(s). For example ˆ( )u s  is written for “Itô-type” SDE as 
 

 
,1 ,2ˆ ˆ( ) ( ) ( )TB u TB udu s G u s ds G dW s   . (7) 

 

     In eqn (7) GTB,1u and GTB,2u are the parameters of the “turbulence filter” [1, 3]. 
A similar model as in eqn (7) is used for ˆ ( ) ( ) /w s w s U , expressed in terms of 

GTB,1w and GTB,2w. Previous studies [1,20] have demonstrated that the first-order 
model in eqn (7) is suitable. In fact, the latter parameters can be estimated from 
the power spectral densities of the wind turbulence at deck level, as described in 
[2, 20].  
     The effects of aeroelastic modeling errors are indirectly simulated through 
parameter Δ in Z. This Δ is related to the 

,id   coefficient of the IF Φαα in 

eqn (2) (with i i m  ), corresponding to the aeroelastic state 
, , , ( )ae k i s   of 

the torsional mode k, since this mode is primarily responsible for flutter. The 
randomization of 

,id   is based on 
, , ,i i id d      , with 

,id   being the 

expected value of the i -th term of Φαα in eqn (2), while 
,i     is a zero-mean 

random parameter.  
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     The vector ZAE(s) in eqn (6) is therefore partitioned as 
 ( 1) 1

, , ,( ) ( ), ( )AE
T

n
AE AE ae k is s s    Z Z 

to highlight the contamination error in the 

last term (mode k, Φαα and i i m  ). The IF model requires that 
 

 
, , , , , , , , , , ,( ) ( ) ( ) ( ) ( ).kae k i i i i i i ae k is d c s d s                      (8) 

 

     Other aeroelastic states are unaffected by the random 
,i   . The error 

propagation with 
, , ,i i id d      does not influence mode j because of 

Λjj,αα=Λjk,αh=0 in eqns (3), (6) due to hk(x)=0 and αj(x)=0. 
     The dynamics of ZAE(s) is linear when the error is absent and can be related to 
a matrix AAE of dimensions 

AE AEn n  in the state-space model, derived from 

eqn (3). Details may be found in [1]. When 
, , ,i i id d       is introduced, 

the first (nAE-1) rows of AAE are still unaffected by eqn (8). 
     Similarly, the vector-equation related to ZTB(s)=[ ˆ ˆ( ), ( )u s w s ]T is linear 

through an 2AEn   matrix ATB:  
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, (9) 

 

with Qj=0.5ρB4ℓ/Ij and Qk=0.5ρB4ℓ/Ik. Finally, the nonlinear function of 
Z(s)=[ZAE(s),ZTB(s),

,i   ]T in eqn (6) is rewritten as 
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Equation (10) is combined with d=[0  1 AEn ,GTB,2u,GTB,2w,0]T and the matrix 
 

 ,1

,1

0
.

0
TB u

uw
TB w

G

G

 
   
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     In previous eqns (9)–(11) the superscripts, included within brackets, denote 
the dimensions of each sub-matrix or vector. 
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4 “Direct Euler Monte-Carlo” estimation of statistical 
moments vs. assessment of moment Lyapunov exponents 

The concept of Mean-Square Stability (MSS), based on the second-moments 
properties of E[Z(s)Z(s)T], has often been utilized (e.g. [4–6, 17]) for 
determining the role of noise on the critical flutter velocity (Ucr) as a function of 
the initial distribution of Z(s=0). Recently, it has been shown [9] that an MSS-
based estimation may not be conservative in a nonlinear SDE system (as in 
eqn (6)), and that a smaller stochastic stability domain, i.e., a smaller Ucr, may be 
possible if higher statistical moments are considered. 
     The latter observation has been used to evaluate the flutter velocity in the 
presence of IF errors. The evaluation of Ucr is based on the definition of “p-th 
moment stochastic stability” [9] of the time-varying process Z(s) in eqn (6) with 
p=2 and p=3. First-moment stability (p=1) has not been analyzed since Ucr 
coincides with deterministic flutter, independently of aNL [1]. 
     First, a “Direct Euler-Monte Carlo” algorithm (DEMC) is employed to solve 
eqn (6) numerically, as closed-form solution of eqns (6) ([4-6,17]) is impractical 
when the number of states is large. The DEMC algorithm is based on the Euler 
time-marching scheme [10, 18] for integrating the SDE, and on Monte Carlo 
simulation for assessing statistical moments. It requires the generation of 

t’=0,..,NS samples of unit-variance Gaussian increments (
( ')

'

t

jW ) of the Wiener 

process W(s). Such increments are evaluated between ' 1js   and 'js  time instants, 

i.e., for step ( ') ( ') ( ')
1

t t t
j j js s s     of index j’. As a result, eqn (6) can be 

transformed into NS deterministic iterative problems with respect to index t’ as 
 

( ')( ') ( ') ( ') ( ') ( ')
' ' 1 ' 1 ' 1 ' '( ) ( ) ([ ( ), ( ), ] ) 2

tt t t t T t
j j NL AE j TB j j jis s s s s W       Z Z a Z Z d  (12) 

 

     In eqns (12) the increments of W(s), 
( ')

'

t

jW , are mutually independent. A 

Monte-Carlo-based sample of the random vector at initial time, ( ')
0( 0)t s Z , is 

also generated. Since eqn (12) converges to the solution of eqn (6) as NS→∞ [10] 
in “weak form”, the DEMC algorithm is employed to estimate the p-th moments 
of the modal coordinates (E[ξg(s)2] or E[ξg(s)3] with g=j, k) and “modal 
velocities” (E[ξ’g(s)2] or E[ξ’g(s)3]). Preliminary numerical tests [1] have 
indicated that, since the latter quantities are mainly responsible for flutter, the 
analysis of other states is redundant. In contrast with most literature examples 
(e.g. [9]) the temporal evolution of E[ξg(s)3] is used herein, instead of E[|ξg(s)|3]. 
     In parallel with the DEMC algorithm, the p-th Moment Lyapunov Exponent 
(MLE) [9, 21] of the state vector Z is calculated. The assessment of the p-th 
MLE [9] is based on a suitable norm of Z. The MLE is related to the slowest 
oscillation decay rate in an SDE system and is equivalent to the largest eigen-
value of a deterministic system. A negative MLE indicates p-th moment stability 
[9]. In this study, the assessment of the p-th MLE has been restricted to the sub-
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vector Ξ(s)=[ξj(s), ξk(s),ξ’j(s),ξ’k(s)]T, mainly responsible for flutter, and for 
comparison with the DEMC algorithm. The p-th MLE of Ξ(s) is [9] 
 

  1
( ) lim log E ( )

p

sp s
s

    Ξ Ξ . (13) 

 

     The term ||Ξ(s)||p=(Ξ(s)TΞ(s))p/2 is derived from the Euclidean norm of Ξ(s) 
with p=2,3. Practically, eqn (13) is estimated as ΛΞ(p)≈1/slog(E[||Ξ(s)||p]) for a 
large s by Euler – Monte Carlo integration in eqns (13). Even though more 
refined procedures for estimating ΛΞ(p) are available [9], this simple approach is 
still acceptable. Errors, numerical convergence and approximation of the exact 
solution are known issues of both DEMC algorithm and an approximated MLE 
[9]. Both aspects have been carefully addressed by controlling the time step 

( ')
'

t
js  and by extending each Monte Carlo sample of eqns (12) over a long time. 

5 Simulation results 

A simplified long-span bridge model, designated as “B1”, is used in this 
preliminary analysis. The structural properties of B1 are derived from the 1992 
design of the Messina Strait Bridge Italy, [22]. This is a suspension bridge with 
central span length 3300 mcs  , deck width B=60m, mass per unit length 

4
0 5.4 10  kg/mm    and mass moment of inertia 6 2

0 28.0 10  kg m /mI    . 

Flexural (j) and torsional (k) modes are skew-symmetric with frequencies 0.06 
Hz, 0.08 Hz. Mode shapes are 

,B1( ) sin(2 / )j csh x x  , 
,B1( ) sin(2 / )k csx x   . 

     The aerodynamic and aeroelastic properties of the “flat plate” [8] are 
employed to approximately simulate the behavior of a streamlined closed-box 
girder. Static coefficients at α0=0 are: CL=CM=0, C*

L=2π (positive upward) and 
C*

M=π/2. The “error-free” parameters (as in eqn 2) are the same for both lift and 
torque loading due to Φhα(s)=Φhh(s)=Φαh(s)=Φαα(s) with model order 
mhα=mhh=mαh=mαα=2. In the case of Φαα(s) with s=tU/B, these coincide with the 
R.T. Jones’ parameters [23] c1,αα=0.165, d1,αα=0.09, c2,αα=0.335, and the average 

2, 0.60d   . The deterministic flutter velocity (δ2,αα=0) is 20.1 m/s for B1 [1, 2]. 

     The Kaimal and the Lumley-Panowsky spectra are chosen to describe the 
turbulences û  and ŵ . For 15m/s<U<30m/s at deck elevation (eqn 7) it can be 
found [1,2]: GTB,1u=0.186, GTB,2u=0.066, GTB,1w=1.489, GTB,2w=0.104. The 
dimensionless span-wise correlation lengths in eqns (4-5) are 0.11

hj kL L   . 

     Stochastic stability is numerically investigated by DEMC and MLE under the 
following assumptions: modal responses at time s=0 (initial amplitudes ξj0 and 
ξk0) are two independent jointly-Gaussian processes with zero mean and 
dimensionless variances E[ξj0

2]=E[ξk0
2], variable between 0.01 (small initial 

perturbation, compatible with buffeting vibration regimes for a long-span bridge) 
and 1.00 (large perturbation, possibly unrealistic). The IF measurement error δ2,αα 
is a Gaussian variable, independent of other Z states and of time s, with zero 
mean and Standard Deviation SD(δ2,αα)=0.22. Inspection has revealed that for 
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B1, the step ( ')
'

t
js  in eqns (12) must coincide with a time duration Δt at least 

10-3 times smaller than the lowest period of interest, and that NS ≥ 150 must be 
used for accurate assessment of E[ξj(s)p] and E[ξk(s)p]. 
     Figure 2 shows a typical example of the numerical results, based on the 
DEMC algorithm. Second and third moments of the torsional mode k at U=18.5 
m/s are depicted as a function of dimensionless time s with initial variances 
E[ξj0

2]=E[ξk0
2]=0.10 at s=0 for both modes. Dimensionless modal amplitudes and 

velocities are depicted. It is evident from Figure 2 that this velocity is unstable 
for B1 if the 3-rd moment stability criterion is utilized (modal velocity diverges 
for s>50), whereas E[ξk

2(s)]) of B1 is still stable (bounded vibration). 
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Figure 2: DEMC-based estimation of 2nd- (E[ξk
2(s)]) and 3rd-moment 

(E[ξk
3(s)]) time histories for mode k of B1 at U=18.5 m/s. Zero-

mean IF error with SD(δ2,αα)=0.22 and initial variance E[ξk0
2]=0.10. 

     Figure 3 shows an example of 2nd and 3rd MLE estimation for B1 at U=18.5 
m/s, based on the time history of ΛΞ(p)≈1/slog(E[||Ξ(s)||p]), zero-mean IF error 
with SD(δ2,αα)=0.22 and initial variances E[ξj0

2]=E[ξk0
2]=0.10. This figure is 

equivalent to Figure 2 since U, initial conditions imposed on ξj0 and ξk0 and 
statistical properties of δ2,αα are the same. It is utilized for comparison purposed 
between DEMC and MLE methods.  
     In Figure 3 a transition from negative to positive values can be seen for both 
ΛΞ(2) and ΛΞ(3) at a very large s>150; this fact suggests that, based on MLE 
estimation (and in contrast with Figure 2), flutter has already occurred for B1 at 
U=18.5 m/s, independently of the moment stability criterion. 
     Finally, Figure 4 is a summary of the simulation results for B1. In Figure 4, 
the flutter velocity (Ucr) of B1 is shown as a function of E[ξj0

2]=E[ξk0
2]. The 

comparison of results is based on 2nd (p=2) and 3rd (p=3) moment stability 
criteria, calculated by both DEMC and MLE methods. Resolution in Figure 4 is 
±0.5 m/s. As a general trend, a reduction of Ucr is observed as a function of 
initial amplitude vibration variances. 
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Figure 3: Assessment of 2nd and 3rd MLE for B1 at U=18.5 m/s, based on the 
time history of ΛΞ(p)≈1/slog(E[||Ξ(s)||p]). Zero-mean IF error with 
SD(δ2,αα)=0.22 and initial variances E[ξj0

2]=E[ξk0
2]=0.10. 
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Figure 4: Flutter velocity of B1 vs. initial-amplitude variances 
(E[ξj0

2]=E[ξk0
2]); p-th moment stability calculated by DEMC and 

MLE. Zero-mean IF error with SD(δ2,αα)=0.22. 

6 Discussion and concluding remarks 

Coupled-mode Flutter stability of a long-span bridge, influenced by the 
randomness in the aeroelastic bridge properties, is investigated in this study. An 
analytically-derived and numerically-implement model, based on stochastic 
differential equations, has been utilized. Stochastic stability threshold criteria 
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have been established in terms of mean squares and third moments. A 3300m 
simulated bridge model has been employed as a preliminary test case. A 
decrement of critical velocity has been noticed if the variances of initial vibration 
amplitude are increased. The latter quantity may be interpreted as being related 
to an initial deck oscillation at incipient flutter due to wind turbulence The 
observed decrement of critical velocity is not negligible, between 10% and 20%, 
depending on the stability criterion which is employed. The study has also 
confirmed the feasibility of using Moment Lyapunov Exponents for random 
flutter estimation. More investigation is still needed, since some differences have 
been noticed among various stability criteria. 
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