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Abstract

This paper proposes error estimators to validate Transmitting Boundary Conditions
(TBCs) in fluid-structure interaction problems. The error estimators are based on
a new formulation of the dynamic response of fluid-structure systems including
TBCs. The mathematical background is briefly discussed and the obtained
equations are solved numerically to assess the accuracy of a given TBC and
determine the associated error independently of FEM or BEM modeling of the
fluid domain. The error estimators take account of : (i) structure’s flexibility,
(ii) fluid compressibility, (iii) energy dissipation at fluid boundaries, (iv) fluid
domain truncation length, and (v) excitation frequency. An illustrative example
consisting of a dam-reservoir system is presented where an error estimator is used
to evaluate the effects of various TBCs on the hydrodynamic pressure acting on
the dam upstream face. The proposed formulation can be programmed easily and
used efficiently for rigorous assessment of classical or newly-developed TBCs for
vibrating fluid-structure systems.
Keywords: fluid-structure interaction, transmitting boundary conditions, error
analysis, analytical formulations, dam-reservoir systems, earthquake analysis,
hydrodynamic loading.

1 Introduction

Accurate evaluation of hydrodynamic loading on structures such as dams is crucial
for their safety assessment. Significant research has been devoted to study this
type of loading since the pioneering work of Westergaard [1] who introduced the
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added mass concept. Since then, more advanced techniques have been developed
for complex fluid-structure interaction problems with the Finite Element Method
(FEM) being the most popular [2–4]. Practical FEM modeling requires the virtual
truncation of large extent or infinite fluid domains at a finite distance from the
studied structure. In this case, a Transmitting Boundary Condition (TBC) has to
be applied at the boundary between the near and far fields to ensure adequate
energy radiation [5, 6]. These special boundary conditions and the truncation
distance should be defined appropriately to prevent reflection of spurious waves
back towards the structure. Otherwise, significant errors may be introduced in the
prediction of the dynamic response of the fluid-structure system.

TBCs are generally approximate, thus introducing some error into the solution.
This error is usually minimized based on the experience and judgement of the
analyst after some initial guess of the truncation boundary location. Successive
trials are then performed to ensure numerical convergence of the FEM solutions
as a function of truncation length and mesh refinement. It is important however
to separate errors that can be attributed strictly to the type of TBC applied and
its location from the discretization, convergence, or other numerical or modeling
errors specific to the FEM packages used. The main objective of this work is
to propose an original analytical technique to reliably predict the accuracy of a
given TBC in a vibrating fluid-structure system and estimate the TBC effects and
associated error independently of FEM modeling of the fluid domain.

2 New formulation for TBC error estimators

Fig. 1 illustrates a schematic structure of height Hs, in contact with a semi-infinite
fluid reservoir of constant height Hr, truncated at a distance Lr from the fluid-
structure interface. A Cartesian coordinate system with axes x and y and origin at
the heel of the structure is adopted as well as the following main assumptions : (i)
the structure and the fluid are assumed to have a linear elastic behavior; (ii) the
fluid is compressible and inviscid, with its motion irrotational and limited to
small amplitudes; and (iii) gravity surface waves are neglected. Under these
assumptions, the hydrodynamic pressure p(x, y, t) within the fluid domain obeys
the wave equation

∇2p =
1

C2
r

∂2p

∂t2
(1)

where ∇2 is the Laplace differential operator, t the time variable, ρr the
mass density of water and Cr the velocity of compression waves in the fluid
domain. Considering horizontal harmonic ground accelerations üg(t) = ag eiωt,
hydrodynamic pressure can be expressed in the frequency domain as p(x, y, t) =
p̄(x, y, ω) eiωt, where p̄(x, y, ω) is a complex-valued frequency response function
(FRF). Introducing this transformation into eqn (1) yields the classical Helmholtz
equation

∇2p̄+
ω2

C2
r
p̄ = 0 (2)
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Figure 1: Fluid-structure system and boundary conditions.

We show that the hydrodynamic pressure FRF p̄ can be decomposed as [7]

p̄(x, y, ω) = p̄0(x, y, ω)− ω2
ms∑
j=1

Z̄j(ω) p̄j(x, y, ω) (3)

where p̄0 is the FRF for hydrodynamic pressure due to rigid body motion of the
structure, and where p̄j is the FRF corresponding to hydrodynamic pressure due to
horizontal acceleration ψ(x)

j (y) =ψ
(x)
j (0, y) of the fluid-structure interface along

structural mode j. The boundary conditions (BCs) to be satisfied by FRFs p̄0
and p̄j for the semi-infinite and truncated fluid-domain cases are illustrated in
fig. 1, including a free surface BC, a fluid-structure interaction BC, an infinite
BC, a TBC and a dissipative BC defined using a damping coefficient q. In the
rest of the paper, a superscript (∞) will be used to denote classical hydrodynamic
pressures corresponding to a semi-infinite fluid-domain [7]. These pressures are
written here as the summation of mr functions p̄ (∞)

0n and p̄ (∞)
jn corresponding each

to a reservoir mode n

p̄
(∞)
0 (x, y, ω) =

mr∑
n=1

p̄
(∞)
0n (x, y, ω) ; p̄

(∞)
j (x, y, ω) =

mr∑
n=1

p̄
(∞)
jn (x, y, ω) (4)

in which

p̄
(∞)
0n (x, y, ω) = −2ρragHr

λ2n(ω)

βn(ω)

I0n(ω)

κn(ω)
eκn(ω) x Yn(y, ω) (5)

p̄
(∞)
jn (x, y, ω) = −2ρrHr

λ2n(ω)

βn(ω)

Ijn(ω)

κn(ω)
eκn(ω) x Yn(y, ω) (6)

where λn and Yn are complex-valued frequency dependent eigenvalues and
orthogonal eigenfunctions satisfying for each fluid vibration mode n
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e2iλn(ω)Hr = −λn(ω)− ωq

λn(ω) + ωq
(7)

Yn(y, ω) =

[
λn(ω)− ωq

]
e−iλn(ω) y +

[
λn(ω) + ωq

]
eiλn(ω) y

2λn(ω)
(8)

and where the terms βn, κn, I0n, Ijn are given by

βn(ω) = Hr
[
λ2n(ω)− ω2q2

]
+ iωq ; κn(ω) =

√
λ2n(ω)−

ω2

C2
r

(9)

I0n(ω) =
1

Hr

∫ Hr

0

Yn(y, ω) dy ; Ijn(ω) =
1

Hr

∫ Hr

0

ψ
(x)
j (y)Yn(y, ω) dy (10)

As mentioned previously, appropriate TBCs are required for efficient finite
element modeling of fluid-structure systems. In this case, infinie boundary
conditions are replaced by TBCs to be applied at a finite distance Lr from the fluid-
structure interface as shown in fig. 1. TBCs are used to prevent or reduce reflection
of waves impinging a fictitious truncation boundary of an infinite fluid domain.
They can generally be defined by the relationship between the hydrodynamic
pressure and its normal gradient both determined at the truncation boundary.
According to the system of axes in fig. 1, we consider TBCs that can be expressed
as

∂p̄
(∞)
0

∂x
(−Lr, y, ω) = θ

(Lr)
0 (y, ω) p̄

(∞)
0 (−Lr, y, ω) (11)

∂p̄
(∞)
j

∂x
(−Lr, y, ω) = θ

(Lr)
j (y, ω) p̄

(∞)
j (−Lr, y, ω) (12)

where the functions θ
(Lr)
0 and θ

(Lr)
j are generally height- and frequency-

dependent. We note that the TBC in eqn (11) accounts for rigid body motion of the
dam, while that in eqn (12) accounts for dam elastic deformation along structural
mode shape ψ(x)

j . In the rest of the paper, a superscript (Lr) will be used to denote
hydrodynamic pressures obtained using TBCs placed at a distance Lr from fluid-
structure interface. In this case, eqns (4) to (6) of the classical formulation are no
longer valid. To get a rigorous assessment of the accuracy and effectiveness of
a given TBC, a new formulation is developed in this work. The hydrodynamic
pressures p̄ (Lr)

0 and p̄ (Lr)
j are first written as the summation of mr functions p̄ (Lr)

0n

and p̄ (Lr)
jn corresponding each to a reservoir mode n

p̄
(Lr)
0 (x, y, ω) =

mr∑
n=1

p̄
(Lr)
0n (x, y, ω) ; p̄

(Lr)
j (x, y, ω) =

mr∑
n=1

p̄
(Lr)
jn (x, y, ω) (13)

In this work, we show that the FRFs p̄ (Lr)
0n and p̄ (Lr)

jn can be expressed as
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p̄
(Lr)
0n (x, y, ω) =

[
e−κn(ω) x + eκn(ω) x

]
Γ(0)
n (ω)Yn(y, ω) + p̄

(∞)
0n (x, y, ω) (14)

p̄
(Lr)
jn (x, y, ω) =

[
e−κn(ω) x + eκn(ω) x

]
Γ(j)
n (ω)Yn(y, ω) + p̄

(∞)
jn (x, y, ω) (15)

in which Γ
(0)
n (ω) and Γ

(j)
n (ω) are elements of vectors Γ(0) and Γ(j), obtained by

solving the systems of linear equations

A(0)(ω) Γ(0)(ω) = B(0)(ω) ; A(j)(ω) Γ(j)(ω) = B(j)(ω) (16)

where the elements of matrix A(ℓ) and vector B(ℓ) are given for ℓ=0, j by

A(ℓ)
sn (ω) =

κn(ω)βn(ω)

2λ2n(ω)

[
e−κn(ω)Lr − eκn(ω)Lr

]
δsn

(17)

−
[
e−κn(ω)Lr + eκn(ω)Lr

] ∫ Hr

0

θ
(Lr)
ℓ (y, ω)Ys(y, ω)Yn(y, ω) dy

B(ℓ)
s (ω) = 2ρr ηℓHr

mr∑
n=1

λ2n(ω)

βn(ω)

Iℓ n(ω)

κn(ω)

[
κn(ω)βn(ω)

2λ2n(ω)
δsn

(18)

−
∫ Hr

0

θ
(Lr)
ℓ (y, ω)Ys(y, ω)Yn(y, ω) dy

]
e−κn(ω)Lr

in which η0=ag, η1=1 and δ is the Kronecker symbol.
One important aspect of this formulation is that it takes account of the variations

of the functions θ (Lr)
0 and θ (Lr)

j over the height of the fluid domain. We also prove
that if these functions were assumed constant over the height of the fluid domain,
i.e. independent of the y coordinate, eqns (14) and (15) simplify to

p̄
(Lr)
0n (x, y, ω) = −2ρragHr

λ2n(ω)

βn(ω)

I0n(ω)

κn(ω)
X

(Lr)
0n (x, ω)Yn(y, ω) (19)

p̄
(Lr)
jn (x, y, ω) = −2ρrHr

λ2n(ω)

βn(ω)

Ijn(ω)

κn(ω)
X

(Lr)
jn (x, ω)Yn(y, ω) (20)

where X(Lr)
ℓ n and ζ(Lr)

ℓ n are given for ℓ = 0, j by

X
(Lr)
ℓ n (x, ω) =

eκn(ω)(x+Lr) + ζ
(Lr)
ℓ n (ω) e−κn(ω)(x+Lr)

eκn(ω)Lr − ζ
(Lr)
ℓ n (ω) e−κn(ω)Lr

(21)

ζ
(Lr)
ℓ n (ω) =

κn(ω)− θ
(Lr)
ℓ (ω)

κn(ω) + θ
(Lr)
ℓ (ω)

(22)
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Depending on whether an infinite condition or a TBC is applied, the FRF for
total hydrodynamic pressure is then given by

p̄ (∞)(x, y, ω) = p̄
(∞)
0 (x, y, ω)− ω2

ms∑
j=1

Z̄
(∞)
j (ω) p̄

(∞)
j (x, y, ω) (23)

p̄ (Lr)(x, y, ω) = p̄
(Lr)
0 (x, y, ω)− ω2

ms∑
j=1

Z̄
(Lr)
j (ω) p̄

(Lr)
j (x, y, ω) (24)

where the vectors Z̄(∞) and Z̄(Lr) of generalized coordinates Z̄ (∞)
j and Z̄ (Lr)

j , j=
1 . . .ms , are solutions of the system of equations

S̄(∞) Z̄(∞) = Q̄(∞) ; S̄(Lr) Z̄(Lr) = Q̄(Lr) (25)

in which elements of S̄(∞), S̄(Lr), Q̄(∞) and Q̄(Lr) are obtained for n= 1 . . .ms
and j=1 . . .ms as

S̄
(∞)
nj (ω) =

[
− ω2+

(
1 + i ηs

)
ω2
n

]
δnj + ω2

∫ Hr

0

p̄
(∞)
j (0, y, ω)ψ(x)

n (y) dy (26)

Q̄ (∞)
n (ω) = −agψ

T
n M1+

∫ Hr

0

p̄
(∞)
0 (0, y, ω)ψ(x)

n (y) dy (27)

where ωn is the vibration frequency corresponding to structural mode shape ψn

and ηs is a assumed constant hysteretic damping of the structure. A convergence
study is conducted to determine the sufficient numbers ms and mr of structural
and reservoir mode shapes to be included into each specific analysis. Using the
equations presented above, error estimators to monitor the sensitivity of various
response quantities to a given TBC can be defined. Due to space limitations, only
the hydrodynamic pressure error estimator defined by

η
(Lr)
|p̄| (y, ω) =

∣∣p̄(Lr)(0, y, ω)
∣∣− ∣∣p̄ (∞)(0, y, ω)

∣∣∣∣p̄ (∞)
(0, y, ω)

∣∣ (28)

is investigated in the next section.

3 Application to a dam-reservoir system

For illustration purposes, the formulation and error estimator presented previously
are used to study the dam-reservoir system shown in fig. 2, subjected to a unit
horizontal harmonic ground acceleration üg(t) = eiωt. The simplified dam cross-
section has a height Hs = 121.92m (400 ft), a downstream slope of 0.8 and a
vertical upstream face. A full reservoir is assumed, i.e. Hr = Hs, and different
reservoir truncation lengths Lr are considered as will be discussed later. Fig. 2
illustrates the boundary conditions used. A dam Poisson’s ratio νs =0.2 and mass
density ρs = 2400 kg/m3 are adopted. To assess the influence of dam stiffness,
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Figure 2: Dam-reservoir system studied and boundary conditions used.

two moduli of elasticity Es =25GPa and Es =35GPa are considered. A constant
structural hysteretic damping factor ηs = 0.1 is adopted. The water is assumed
compressible, with a velocity of pressure waves Cr=1440m/s and a mass density
ρr = 1000 kg/m3. To obtain the mode shapes ψj , j = 1 . . .ms, the dam section
is modeled using quadrilateral 9-node and triangular 6-node plane stress finite
elements as illustrated in fig. 2.

The hydrodynamic pressure error estimator η(Lr)
|p̄| is determined at height yA =

0.1Hr for the following TBCs:
• Sommerfeld radiation boundary condition [8], corresponding to

θ
(Lr)
0 (ω) = θ

(Lr)
j (ω) =

iω
Cr

(29)

• Sharan boundary condition [3], corresponding to

θ
(Lr)
0 (ω) = θ

(Lr)
j (ω) = κ1(ω) (30)

• A proposed analytical TBC given by

θ̃ℓ
(Lr)

(y, ω) =

m̃r∑
n=1

κn(ω) p̄
(∞)
ℓ n (−Lr, y, ω)

m̃r∑
n=1

p̄
(∞)
ℓ n (−Lr, y, ω)

for ℓ=0, j (31)

where the sum is truncated at a number m̃r less than the number of fluid
modes mr ensuring convergence.

Figs. 3 and 4 illustrate the results obtained for two reservoir truncation lengths
Lr =0.1Hr and Lr =0.5Hr, respectively. Error estimators are given in % and are
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Figure 3: Hydrodynamic pressure error estimator for truncation length Lr=0.1Hr.
Sommerfeld BC; Sharan BC; Analytical BC with m̃r = 2;
Analytical BC with m̃r = 3; Analytical BC with m̃r = 10.

presented as bar charts equally spaced at frequency increments of ∆ω = 0.08ω0

over a frequency ratio range from 0 to 6. For each truncation length, rigid and
flexible dams with Es =35GPa and Es =25GPa are investigated, as well as two
wave reflection coefficients α=1.0 and α=0.2, where α represents the portion
of the wave amplitude reflected back to the reservoir and is related to the damping
factor q by [7]

α =
1− q Cr

1 + q Cr
(32)

The bar charts in fig. 3 clearly indicate that the error associated with the
Sommerfeld boundary condition is the highest for most of the frequency range
of interest, namely for low frequencies ω 6 ω0. It is seen that the Sharan
boundary condition yields satisfactory results only for very low frequencies, i.e.
a maximum error of approximately 5%. The error associated with the Sharan
boundary condition varies significantly as a function of frequency ratio and dam
flexibility, but we note that this error globally increases with dam stiffness. Sharan
and Sommerfeld boundary conditions yield similar error estimators in the higher
frequency range. We also observe that error estimators are less sensitive to
reservoir bottom wave absorbtion. More reservoir modes need to be included to
match hydrodynamic pressures in the higher frequency range. The number of
reservoir modes required for convergence in a rigid dam case, i.e. m̃r ≈ 3, is less
than that required in the case of a flexible dam, i.e. m̃r≈10. It is important to note
however that an increase in the number of reservoir modes does not necessarily
reduce the error estimators over the whole frequency range, but rather enlarges the
lower frequency range over which error is minimum. No definite trend could be
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Figure 4: Hydrodynamic pressure error estimator for truncation length Lr=0.5Hr.
Sommerfeld BC; Sharan BC; Analytical BC with m̃r = 2;
Analytical BC with m̃r = 3; Analytical BC with m̃r = 10.

identified regarding the sign of the error estimators. For example, Sharan boundary
condition is shown to be alternatively conservative or nonconservative depending
on the frequency ratio.

As truncation length increases, fig. 4 shows that error estimators generally
diminish over the whole frequency range. For low frequencies, Sommerfeld
boundary condition still yields unsatisfactory results, while the error due to Sharan
boundary condition is nearly null. Fewer reservoir modes are now required to
obtain convergence over all the frequency range, i.e. m̃r ≈ 3. The effect of
energy dissipation at reservoir bottom is slightly more important that for truncation
length Lr = 0.1Hr. It is seen that reservoir bottom wave absorption causes
error estimators to slightly diminish. As previously, Sharan and Sommerfeld
yield approximately similar error estimators in the higher frequency range. We
also observe that the error reduction due to reservoir bottom wave absorption
becomes more pronounced with increasing truncation length. For the sake of
brevity, the previous results focused on the evaluation of hydrodynamic pressure
in a given point at dam-reservoir interface. Other error estimators for response
quantities such as hydrodynamic forces or vibration periods can be obtained using
the proposed formulation as detailed elsewhere [9].

4 Concluding remarks

This paper presented and validated an original formulation to study dynamically
excited fluid-structure systems including TBCs. The mathematical derivations
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were provided and the resulting systems of equations were solved numerically
to assess the accuracy and effectiveness of some classical approximate TBCs
to determine the error associated with their use independently of FEM or
BEM modeling of the reservoir. In an illustrative example of a dam-reservoir
system, a proposed error estimator was investigated to get more insight into the
sensitivity of hydrodynamic pressures at dam upstream face when a given TBC
is applied at reservoir upstream. It is shown that the proposed formulation can
be used efficiently for a rigorous assessment of the accuracy and effectiveness
of classical or newly-developed TBCs, namely by defining reservoir length to
depth ratios and frequency ranges for which the application of these TBCs is
recommended. The proposed procedure, which can be easily programmed, is
valuable in testing, validating or developing either frequency-dependent TBCs or
frequency-independent TBCs generally more suited for time domain analyses.

Acknowledgements

The authors would like to acknowledge the financial support of the Natural
Sciences and Engineering Research Council of Canada (NSERC).

References

[1] Westergaard, H. M., Water pressures on dams during earthquakes.
Transactions ASCE, 98, 418–472, 1933.

[2] Saini, S. S., Bettess, P. & Zienkiewicz, O. C., Coupled hydrodynamic response
of concrete gravity dams using finite and infinite elements. Earthquake
Engineering and Structural Dynamics, 6, 363–374, 1978.

[3] Sharan, S. K., Efficient finite element analysis of hydrodynamic pressure on
dams, Journal of Computers and Structures, 42, 713–723, 1992.

[4] Bouaanani, N. & Lu, F. Y., Assessment of potential-based fluid finite elements
for seismic analysis of dam–reservoir systems, Journal of Computers and
Structures, 87, 206–224, 2009.

[5] Çetin, M. & Mengi, Y., Transmitting boundary conditions suitable for analysis
of dam-reservoir interaction and wave load problems, Applied Mathematical
Modelling, 27, 451–470, 2003.

[6] Gogoi, I. & Maity, D., A non-reflecting boundary condition for the finite
element modeling of infinite reservoir with layered sediment, Advances in
Water Resources, 29, 1515–1527, 2006.

[7] Fenves, G. & Chopra, A. K., Earthquake analysis and response of concrete
gravity dams. Report No. EERC-84/10, Univ. of California, Berkeley, 1984.

[8] Sommerfeld, A., Partial differential equations in physics. Academic Press,
New York, 1949.

[9] Bouaanani, N. & Miquel, B., A new formulation and error analysis
for vibrating dam-reservoir systems with upstream transmitting boundary
conditions. Journal of Sound and Vibration, 329, 1924-1953, 2010.

178  Fluid Structure Interaction VI

 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 115, © 2011 WIT Press


