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Abstract

The present paper deals with the hydrodynamic force from granular streams
overflowing a wall-like obstacle. An analytical continuum model is proposed to
derive this force both for steady and unsteady flow conditions. The force derived
from the continuum model is successfully compared to the time-averaged force
from discrete numerical simulations of free-surface granular flows down an incline
and overflowing a wall. A good agreement is found in a large range of slope
inclinations from a slow dense regime to a rapid dilute one. The continuum model
gives the various contributions of the total force. Application to avalanche dam
design is discussed.
Keywords: granular avalanche, protection dam, obstacle, force, continuum model,
discrete simulations.

1 Introduction

Gravity-driven mass movements such as dense avalanches of granular snow can
lead to huge damages on structures (buildings and protection dams). The flow-
obstacle interaction is a crucial question to better understand the influence of
obstacles on flows of granular fluids and the force that granular fluids can exert
on the obstacle. In this paper, an analytical continuum model is proposed to
derive the force from avalanches overflowing a wall-like obstacle. The model is
based on momentum and mass conservations applied to a control volume which
corresponds to the upstream volume disturbed by the presence of the obstacle.
Small-scale discrete numerical simulations on granular flows down an incline and
meeting a wall were carried out to calibrate and test the continuum model. Steady
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recirculating flows and time-varying avalanche flows were studied. In section 2
are presented the continuum model equations. The section 3 briefly describes the
discrete elements method (DEM), the simulated systems and the main results in
terms of force on the wall (further details can be found in [1, 2, 6]). We focus our
attention on the stagnant zone, formed upstream the obstacle, and inside which
important fluctuations occur. The section 4 is devoted to the continuum model
calibration (closure equations) and its prediction in term of force for both steady
and transient flows. A good agreement between the time-averaged force from the
DEM simulations and the continuum model force is found whatever the flow
regime, from the slow dense regime at low slope inclinations to the rapid dilute
regime at larger slopes. The section 5 concludes the paper about the interest and
the limits of the proposed analytical continuum model for the design of structures
in avalanche prone areas.

2 Continuum model equations

2.1 Steady flows

Let us define the control volume V0 as the fluid volume disturbed by the presence
of the wall-like obstacle upstream of the obstacle (see sketch in Fig. 1). The
momentum conservation in the control volume V0 is:∮

S

ρu⃗(u⃗ · n⃗)dS =

∮
S

pn⃗dS +

∮
S

σ · n⃗dS +

∫∫
V0

g⃗dV (1)

where S is the boundary surface of the control volume V0: S = S1 ∪ S2 ∪ Sb ∪
So ∪Sfs with S1 the incoming flow section, S2 the outflow section, Sb the surface
at the base of the control volume (contact with the bottom), So the surface of the
wall-like obstacle and Sfs the surface corresponding of the free-surface of the
flow (contact with the air). The flow is 2D, the forces are expressed by unit width
(in N.m−1). n⃗ is the unit vector normal to the surface S, ρ is the flow density
(ρ = ρPϕ where ρP is the particle density and ϕ the volume fraction), u⃗ is the
velocity vector, g⃗ the gravity acceleration, p the pressure and σ the stress tensor.
With the mass conservation applied between sections S1 and S2, we obtain:

βQ0
m(u⃗e − u⃗) = P⃗ + F⃗0 + F⃗1 + F⃗2 + R⃗− F⃗ (2)

where u⃗ and u⃗e are the depth-averaged velocities at sections S1 and S2 respectively
and Q0

m = ρ̄hū is the mass flow rate per unit width. P is the weight of the control
volume, F0 is the pressure force at the contact surface with the air (Sfs), F1 is
the pressure force in section S1, F2 is the pressure force in section S2, R is the
reaction of the bottom and F is the force on the obstacle. The assumptions made
to derive these forces are discussed in detail in [6]. The projections of equation (2)
on the x-axis direction (parallel to the bottom) and on the y-axis direction (normal
to the bottom) give the resulting normal (FN ) and tangential (FT ) forces on the
obstacle:
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FN = βρ̄ū2h(1− δu cosα
0) +

1

2
kρ̄gh2 cos θ + ρ̄0V0g sin θ − µ̄zmRy (3)

FT = βρ̄ū2hδu sinα
0 − ρ̄0V0g cos θ +Ry (4)

where h is the incoming flow thickness, ū its depth-averaged velocity and ϕ̄ its
depth-averaged density. θ is the slope inclination. ρ0 is the mean volume fraction in
the control volume V0. β and k are model parameters: β is the coefficient related to
the velocity profile across the layer (ū2 = βū2) and k is the ratio of the longitudinal
normal stress σxx to the vertical normal stress σyy . α0 is the deflection angle due
to the obstacle (angle between u⃗e and the bottom) and δu = ūe/ū defines the
velocity reduction between sections S1 and S2. µ̄zm is a space-averaged friction
coefficient defining the component in the x-axis direction of the bottom reaction
R⃗ as a basal coulombian force: Rx = µ̄zmRy , where Ry is the component in the
y-axis direction of the bottom reaction R⃗.

Combining equations (3) and (4), the normal force FN is:

FN = FN
d + FN

h + FN
w − µ̄zm

(
FT + FT

w + FT
d

)
(5)

FN
d = βρ̄ū2h(1− δu cosα

0) (6)

FN
h =

1

2
kρ̄gh2 cos θ (7)

FN
w = ρ̄0V0g sin θ (8)

FT
w = ρ̄0V0g cos θ (9)

FT
d = −βρ̄ū2hδu sinα0 (10)

Considering that the tangential force on the obstacle (FT ∼ 0) is negligible (see
DEM simulations in section 3.3), we obtain:

FN = FN
d + FN

h + FN
w − µ̄zm

(
FT
w + FT

d

)
(11)

A remarkable process is the formation of a stagnant zone upstream of the wall
(see Fig. 1, right). Taking into account the compression of the granular material

Figure 1: (left) Sketch of the granular stream overflowing the wall-like obstacle
and (right) image showing a discrete numerical simulation.
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inside this dead zone, the product ρ0V0 is:

ρ̄0V0 = ρ̄

(
V0 −

1

2
LH

)
+

1

2
ρzmLH, (12)

with

V0 =
1

2
hL

[
2 + tan

(
2α0 + arctan

H

L

)(
L

h
− δh sinα

0

)
+
δh
L
(H − h) sinα0

]
, (13)

where ρzm is the mean volume fraction inside the dead zone (a priori greater than
the density of the fluid volume above the dead zone assumed to be equal to the
density of the incoming flow ρ̄), L is the dead zone length assumed to be triangular
in shape, δh = he/h is the depth ratio between sections S2 and S1 and H is the
wall height.

Closure equations are needed to define the geometric (α0, L), hydrodynamic
(δu = ūe/ū, δh = he/h) and rheological (µ̄zm) parameters. These closure
equations are discussed in detail in [6] and will be briefly reminded in section
4.1 when calibrating the model on DEM simulations for steady-state flows. The
equation giving the normal force FN on the obstacle will be compared to results
from discrete numerical simulations in section 4.2.1.

2.2 Unsteady flows

Similar notation is adopted for unsteady flows. The momentum conservation in the
control volume V0 is:

d

dt

(∫∫
V0

ρu⃗dV

)
+

∮
S

ρu⃗(u⃗ · n⃗)dS =

∮
S

pn⃗dS+

∮
S

σ · n⃗dS+

∫∫
V0

g⃗dV (14)

The relation ū = 0 inside the dead zone leads to:

d

dt

(∫∫
V0

ρu⃗dV

)
·x⃗ ≈ − d

dt

(∫∫
V0− 1

2HL

ρudV

)
≈ −1

2

d

dt
(ρ̄ū(1 + δu)) (15)

The last term is obtained by assuming that the mean density inside the fluid
volume above the dead zone (equal to V0 − 1/2HL) is close to the incoming
flow density ρ̄ and by approximating the mean velocity with (ū + ūe)/2 =
ū(1 + δu)/2. In unsteady flow regime, a mass exchange between the granular
material overflowing the obstacle and the granular material trapped upstream the
obstacle is likely to occur (in particular at short times when the dead zone length
increases): ρ̄eheūe = ρ̄hū−dQm, where dQm corresponds to the mass exchange.
If we assume that the mass exchange remains weak in comparison with incoming
and outcoming mass flow rates, the mass conservation is still valid: ρ̄eheūe ≈ ρ̄hū.
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This latter coupled with momentum conservation, and with FT (t) ∼ 0, gives the
normal force:

FN = FN
d (t) + FN

h (t) + FN
w (t)− µ̄zm(t)

[
FT
w (t) + FT

d (t)
]
+ Fmv(t) (16)

FN
d (t) = βρ̄(t)[ū(t)]2h(t)[1− δu(t) cosα(t)] (17)

FN
h (t) =

1

2
kρ̄(t)g[h(t)]2 cos θ (18)

FN
w (t) = ρ̄0(t)V0(t)g sin θ (19)

FT
w (t) = ρ̄0(t)V0(t)g cos θ (20)

FT
d (t) = −βρ̄(t)[ū(t)]2h(t)δu(t) sinα(t) (21)

Fmv(t) = −1

2

d

dt
[ρ̄(t)ū(t)(1 + δu(t))] (22)

Fmv(t) is the force caused by the momentum variation over time. Closure
equations are needed to define the geometric [α(t), L(t), V0(t)], hydrodynamic
[δu(t) = ūe(t)/ū(t), δh(t) = he(t)/h(t)] and rheological [µ̄zm(t)] parameters
which depend on time t. These closure equations, discussed in detail in [2], will be
briefly reminded in section 4.1 when calibrating the model on DEM simulations for
avalanche flows. The equation giving the transient force FN (t) will be compared
to results from DEM simulations in section 4.2.2.

3 Discrete numerical simulations

3.1 Simulation method

We performed numerical tests with a commercial code (PFC-Itasca) based on
the molecular-dynamics method [3]. The method was shown to be successful to
simulate dense granular flows [4, 5, 9]. The particles were assumed to interact
through a damped linear spring for the normal force and a linear spring restricted to
a threshold value according to friction between grains (Coulomb condition for the
tangential force). Four microscopic parameters are needed: the normal stiffness kn
(= 104 N m−1 in our simulations), the tangential stiffness kt (= 1/2kn), the local
particle friction µ (= 0.5), and the damping coefficient related to the restitution
coefficient e (= 0.5). Further details on the numerical method and the choice of
the values given to the microscopic parameters are presented elsewhere [1, 2, 6].

3.2 Simulated systems

The simulated systems consisted of an inclined slope and an upstream reservoir
(Fig. 2). The grains in motion were spheres with a slight polydispersity (±10% in
size), of mean diameter d=1mm and of density ρP = 2450 kg m3 (glass material).
The bottom roughness was made with grains with the same properties as the grains
in motion. The granular mass was released from the reservoir with an aperture
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Figure 2: Simulated systems: steady (left) and avalanche (right) flows.

of constant height Hr = 35d. Two kinds of flows were investigated: steady
recirculating flows [6] and time-varying avalanche flows [1, 2]. General features
were different for each kind of flows: see details in Fig. 2. Flows with no obstacle,
in a large range of slope inclinations (16◦ 6 θ 6 32◦), were first investigated.
We characterized the changes over time in flow depth h, depth-averaged velocity
ū and volume fraction ϕ̄ at various locations, x/d, from the reservoir. Second, we
measured the force from the granular stream on an obstacle located at the position
x0/d (900 for recirculating flows and 500 for avalanche flows). The obstacle is
a wall of height H normal to the incoming flow and normal to the bottom. H
was systematically set to be equal to h for steady recirculating flows and to the
maximum in flow depth hmax for finite-sized avalanche flows.

3.3 Force fluctuations and time-averaged force

The main feature of the flow and obstacle interaction is the formation of a stagnant
zone upstream the wall-like obstacle due to geometric trapping. The stagnant
zone, or so called dead zone, is defined as a zone for which the mean velocity
is smaller than a threshold velocity (Fig. 1, right) and is roughly triangular in
shape, corresponding to the assumption made to derive the model presented in
section 2. An intermittent force chains network caused by the discrete nature of
the granular material is observed inside the dead zone leading to large fluctuations

Figure 3: Typical force signals: (left) recirculating flow regime (θ = 28◦) and
(right) avalanche flow regime (θ = 20◦).
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at high frequency in force signals (see in Fig. 3). We calculated the time-averaged
force as shown by the thick continuous lines in Fig. 3. This force, corresponding to
the time-averaged behavior of the discrete assembly, will be compared to the force
derive from the hydrodynamic continuum model.

4 Continuum model calibration and force prediction

4.1 Calibration of the closure equations

In the steady flows’ simulations, we measured the free-surface angle α0
sl, the

depth ratio δh, the dead zone length L and the basal friction µzm, which led
to the following empirical closure equations: (i) α0

sl = aθ + b where a and
b are constant parameters depending on typical friction angles characterizing
the granular material (see details in [6]), (ii) δu = 1 − κα0 = 1/δh (mass
conservation) where κ = (1 − e)/(π/2) with e the restitution coefficient, (iii)
L = H/ tan(θ − θmin) corresponding to the fact that the mean angle of the dead

Figure 4: Model calibration in steady regime: (left-top) free-surface angle α0
sl;

(right-top) flow depth-ratio δh; (left-bottom) dead zone angle length
L/H; (right-bottom) space-averaged friction µ̄zm (in inset is given the
angle θ − αzm).
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Figure 5: Pressure FN/H (left) and ratios F 0
u/FN and F 0

h/FN (right) versus the
slope inclination θ with F 0

u=1/2ρ̄ū2h and F 0
h=1/2ρ̄gh2 cos θ.

zone with the horizontal was found to be constant and equal to θmin whatever
the slope inclination θ, and (iv) µ̄zm = tan θmin. Fig. 4 shows the prediction
of these closure equations compared to discrete numerical data. Further detail of
the calibration procedure are available in [6]. For time-varying avalanche flows,
the angles αzm(t) and αsl(t) were assumed to decrease exponentially from the
value π/2 (no dead zone, L ≃ 0, at the time corresponding to the impact with
the wall) to the value α0

zm or α0
sl corresponding to the steady regime. As a

consequence, the deflection angle α decreases exponentially obeying the relation
α(t) = [αzm(t) + αsl(t)]/2 and L was derived thanks to L(t) = H/ tan[θ −
αzm(t)]. We measured the change over time of the dead zone length L(t) which
allows to validate these assumptions. The friction µ̄zm(t) was defined as it follows:
µ̄zm(t) = tan[θ − αzm(t)]. Further detail of calibration procedure can be found
in [2].

4.2 Force prediction compared to discrete numerical simulations

4.2.1 Steady recirculating flows
In Fig. 5 is given the pressure FN/H versus the slope inclination in steady regime.
The continuum model prediction (continuous line) is compared to numerical data.
The continuum model slightly overestimates the data from discrete simulations for
large slope inclinations. Model prediction is given for other assumptions: FT

d = 0
(dash line), δh = 1 instead of δh = 1 − κα with κ = (1 − e)/(π/2) (dot line)
and β = 1 instead of β = 5/4 (dash-dot line). The results show that it is needed
to take into account the change in depth (and consequently in velocity) between
sections S1 and S2 because δh = 1 gives bad results. Choosing FT

d = 0 leads
to underestimate the data from discrete simulations. The model prediction can be
improved by choosing β = 1 rather than β = 5/4.

4.2.2 Time-varying avalanche flows
In Fig. 6 is given the temporal force signal for various slopes θ = 18◦ (black),
22◦ (dark grey) and 32◦ (light grey). Three phases of the flow-wall interaction
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Figure 6: Avalanche force FN normalized by FDEM
max versus t for θ = 18◦, 22◦

and 32◦ (left); ratios [F 0
u/FN ]max and [F 0

h/FN ]max versus θ (right).
Comparison between DEM data (symbols) and continuum model (dash
line and continuous line with µfit

zm(t) = cµµ̄zm(t)).

can be distinguished: (i) a fast increase in force (corresponding to the dead zone
formation), (ii) a force peak and (iii) a slow decrease in force. The agreement
between discrete numerical data (symbols) and the continuum model (dash line)
is good for the first two phases (i) and (ii) whatever the slope inclination (see also
Fig. 6, right, showing the maximum forces normalized by the typical hydrostatic
and dynamic forces). For larger slope inclinations, a gap is observed for the third
phase corresponding to the avalanche tail. The model largely underestimates the
DEM data. This gap remains an open question. A fitting procedure consisting in
considering a parameter cµ defined by µfit

zm(t) = cµµ̄zm(t) was proposed in [2].
It allows to reproduce the slow decrease in force during the interaction between
the wall and the avalanche tail (continuous lines in Fig. 6, left). cµ is a constant
coefficient depending on the slope inclination. Let us note that considering FT

d = 0
does not influence the results in the transient avalanche regime investigated here.

4.3 Various contribution to the total force

he continuum model allows to quantify the various contributions to the total force:
the dynamic contribution FN

d , the hydrostatic contribution FN
w , the weight FT

w

of the volume disturbed by the presence of the wall (control volume), the basal
friction force Ff = −µ̄zm[FT

w + FT
d ] and the force Fmv caused by momentum

variation over time (equal to zero in steady regime). Fig. 7 shows the results for
both steady recirculating flows and time-avarying avalanche flows.

5 Discussion and conclusion: contribution to avalanche dam
design

The cross-comparison between the continuum model and the DEM data shows
the ability of hydrodynamics approaches to mimic the macroscopic behavior of an
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Figure 7: The various contributions to the total force: (left) steady and (right)
avalanche flows (example for θ = 18◦).

assembly of discrete particles in term of the mean force exerted on a wall if the
model closure equations (geometry, kinematics and rheology) are well calibrated.
The model prediction is very good in steady regime and some improvement is still
needed for the avalanche regime. An open fundamental question is the need of
fitting the basal friction to reproduce the force after the peak at high slopes [2].
Nevertheless, the continuum model provides an analytical formulation to derive
the hydrodynamic force on a wall taking into account the various contributions
to the force. In the framework of relatively slow avalanches, the hydrostatic force
of the incoming flow and the apparent weight of the fluid volume disturbed by
the obstacle should be considered and can be derived from the continuum model.
Engineers in charge of protection dams’ design against granular snow avalanches
often consider the following rule of thumb [8]: Fdesign = CdPdSdam where
Pd = 1/2ρu2 is the dynamic pressure, Sdam is the dam area prone to the avalanche
and Cd is a drag coefficient depending on snow type and obstacle shape. Our
study clearly points at the shortcoming of the snow engineering classical approach.
Attention should be also paid on the following points: (i) the influence of more
complex material properties (cohesion, clustering) on the closure equations in
order to apprehend more complex granular materials close to natural ones, (ii) the
more complex flow and obstacle geometries with possible lateral overflows (see a
preliminary attempt in [7]) and (iii) the fluid/structure coupling processes which
can influence the force the obstacle is likely to undergo (the wall was fixed and
rigid), particularly in the context of force fluctuations (see Fig. 3) which were not
tackled within the time-average hydrodynamic approach presented in this paper.
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