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Abstract 

This study presents a theory of the orthogonal flow of Newtonian fluid in an 
elastic chamber. The elastic chamber is a space bounded by a movable material 
boundary S  that has a single orifice and is pliable with respect to normal forces. 
The characteristic feature of this flow is that the fluid motion is perpendicular to 
moving S and S to the one-parameter level surfaces Si inside the chamber. The 
orthogonal flow domain is confined to such parts of the chamber interior V, for 
which the level function  exists defining the system of level surfaces Si, by 
means of the equation (x,y,z)=i with the set of constant parameters i, 
i=1,2…, .  This flow property enables us to define the three-component 
velocity field a(u,v,w) by the single vector q normal to Si for whole V. By 
means of vector algebra and the Navier-Stokes description of the shear stress 
tensor, a mathematical formulation of the mass and momentum conservation 
laws for orthogonal flow has been derived as the main result of the theory. The 
certainty and the uncertainty of the direction field of flow were used as the 
determining factors in this process. A constitutive form of the level function 
(x,y,z) as the tool for obtaining the system of level surfaces Si for chambers of 
real geometry has been proposed and applied for the sphere and slanted ellipsoid 
chambers. 
     The study of liquor dynamics effects on hydrocephalus development in the 
system of brain ventricles inspired this work. It is assumed that the orthogonal 
flow theory can effectively simplify the mathematical description of a certain 
kind of fluid flow in elastic chambers as well as in some cavities and bags of live 
organisms. 
Key words: single-orifice elastic chamber, orthogonal flow, directional cosines, 
directional field of flow, level function, level surface system, stream lines, 
intrinsic derivatives, constitutive form of level function, Navier-Stokes equations. 
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1 Introduction 

1.1 Brain disorder motivation   

The orthogonal flow in an elastic chamber is understood as fluid motion 
perpendicular to moving wall of the chamber. Such flow or flow approaching its 
properties can occur in certain circumstances in elastic chambers of artificial 
origin, e.g., balloons, balls, and bubbles. In bio-world, it can be in some kinds of 
octopus and jellyfish with reactive motion as well as fluid bags and cavities in 
biologic tissues. The motivation to work on the presented theory arises from the 
latter case. It began during a hydrodynamic study of some hydrocephalic 
phenomena in connection with the cerebrospinal fluid (CSF) flow in the brain 
ventricle system (Kosorin [1]). Just two lateral ventricles, K1 as left and K2 as 
right chamber behave like the elastic single-orifice chambers. 

1.2 Oscillation of the cerebrospinal fluid (CSF) in the brain ventricle system 
as the single-orifice chamber flow  

The endoscopy technique (Novak et al. [2]) has allowed direct monitoring of 
inner swinging movement of a filament neoplasm at the connecting orifice, the 
“foramina of Monro” between brain chambers K1, K2 and third K3. Kosorin’s 
comparative calculation has shown that the liquor dynamics in the chamber 
system is preferably characterized by oscillating liquor through the foramina 
Monro orifices S0, connecting the third chamber K3 with the first two chambers, 
K1 and K2. It was approximately identified with the liquor velocity v = 2.0[m.s-1]  
and th e pu lsating m ass fl ow ra te  ca   2. 0[cm3s-1].  This flow regime seems to be 
laminar because its Reynolds number for the orifice diameter between 0.5 and 
1.0 cm is less than 200. But the total liquor (CSF) secretion and the effluence 
from the brain chambers system into liquor routes are cca one-third of ml/min, 
Nadvornik [3]. It is however more than 360 times less than the oscillating 
discharge between K1, K2 and K3. Therefore, the oscillating CSF flow between 
chambers is a significant property of the brain ventricular system dynamics. 
     Kurtcuoglu et al. [4] presents the numerical simulation of 3D oscillating flow 
of CSF in the third ventricle (chamber K3 in Fig. 1). The 2D numerical model of 
pulsatile movement of CSF in the sagittal plane of K3 has been treated by Cheng 
and Bilston [5]. Simulation of the oscillating CSF flow in the interior of lateral 
ventricles K1 and K2 does not appear in these studies. The phenomenon has 
been very complex and behaves like the object of the presented theory. Therefore 
a new methodical approach can be useful here. The orthogonal flow theory 
would be a step in that direction. 

2 The orthogonal flow hypothesis 

2.1 Definition and physical description of the orthogonal fluid flow in the 
single-orifice elastic chambers 

This study deliberates on the describing of real fluid motion in a space domain 
V  confined by an elastic, flexible, and moving wall having an orifice. Such an 
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elastic chamber of volume V is assumed to exist as a fluid cavity in pliable 
environment Ve; see Fig. 1. This theory considers (specific) dynamic state of the 
elastic system V+Ve, producing in V  the fluid motion in which a fluid moves 
always in the direction to or from the boundary (or orifice) without any streams 
tangential to the chamber wall. The orthogonal flow is considered to exist in the 
whole 3D domain V >0 confined by the elastic material boundary S and the 
passable, orifice surface S0. Then, the whole chamber boundary Sc is given by 

 0SSSc   . (2.1.1) 

     The chamber orifice S0 >0 anchors the chamber in space. Its form and 
position are given as constants in time. The closed curve k0 confines the 
surfacesS, S0, and all Si as their common space line. The shape of V and Vi is an 
oval segment with the common single edge. 
 

 

Figure 1: Scheme of the orthogonal system (Si, sj for elastic chamber V  in 
pliable environment Ve with movable interface S. The one-
parameter level surfaces Si follows from the level function (x,y,z 
= i = const. 

2.2 Directional field of flow. Orthogonal system (Si,  sj) of the level surfaces 
Si and the stream lines sj 

The orthogonal flow theory originates from the idea of existence of the 
directional field of flow. Then one has to define an object toward which the 
velocity vectors a(x,t) are perpendicular. Beginning at S  and proceeding in 
conformity with the idea, one intuitively fills the space V with a system of 
surfaces Si, i=0,1,2...ic and a system of space curves sj, j=1,2...jc normal to Si, so 
that they meet the basic property of a coordinate system (Si,sj). This property 
allows each point (x,y,z) of the domain V to be uniquely determined by the 
crossing point of the single surface Si and the single curve sj, i.e., by the number 
pair (i,j). Regular surfaces Si do not have any common points, except the orifice 
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curve k0, in which all Si cross each other and S0 with S confines V. Space 
curves sj are assumed to be identical with the stream line system of flow.  
     The idea of the orthogonal flow requires to state the direction field of flow 
through the Si system, permitting to define and formulate the orthogonal velocity 
field q(xt). The first and decisive step is anticipating the surfaces Si to be the so-
called level surfaces determined within the chamber domain S  by means of the 
one-parameter relation 

   izyx  ,, ,   i=1,2…  (2.2.1) 

in which i parameters for individual Si are constant. The level function  in 
(2.2.1) determines the direction cosine field (1c, 2c, 3c) of the outside normal to Si 
at each point on Si, by means of the partial derivatives of . Varying i in 
(2.2.1), one ills the domain V with surfaces Si. Therefore, the level function  
alone defines the field of direction cosines (1c, 2c, 3c) for the entire V. Then, the 
unit normal vector n of Si is defined by 

 kji ccc 321 n  (2.2.2)        

and its divergence by 

 divn = 1cx + 2cy + 3cz (2.2.3) 

see Korn and Korn [6], x,y,z mark the partial derivatives. There the unit vectors 
(i, j, k) are the base vectors (constant) and the direction cosine field is a function 
of position. As the vector n creates the field of tangents to sj, one is able to build 
the responding system sj using the direction field defined by (2.2.1). This field, 
of course, has to be identical with the direction field of the flow investigated. 
Moreover, because the field of the unit vector n has been uniquely defined by 
(1c, 2c, 3c), the direction field of the orthogonal flow is uniquely determined by n. 
Finally, its stream line system sj can be built by means of the characteristic 
system of equations if written for continuity equation (3.0.3) in the next chapter.   
     Because (2.2.1) describes also the moving boundary S, its mobility requires 
the parameter i in (2.2.1) to become a continual function of time φi =(t).   
Therefore, treating with S, a unique function of time(t) has to be applied on 
the right-hand side of (2.2.1) instead of the constant φi. Then 

    tzyx  ,,  (2.2.4) 

describes the moving boundary S.  From (2.2.4) it follows that one of the three 
independent variables x,y,z in (x,y,z) becomes a function of the remaining two 
and time t. It applies for any moving boundary problem concerning the elastic 
chamber. 

2.3 The constituent form of the level function  for a single-orifice chamber 

The one-parameter level surface system (2.2.1) is the crucial feature of the 
in theory.  The first property is the condition that the level function   (2.2.1)
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yields such a system (Si, sj), which is orthogonal. The second one follows from 
the singular behavior of the direction field of flow upon the closed curve ko. It 
means that all Si’s intersect upon ko. Due to this singularity, the orifice curve ko 

becomes the determinative element of the level function . These properties can 
be expected at , which is written in the particular constitutive form 

 M
D

N 



  (2.3.1) 

     This form is able to produce the Si system (2.2.1) for a large range of chamber 
shapes if the functions N, D, M are chosen properly. The functions N and 
D, set in the ratio in (2.3.1), provide the singular behavior of  along ko, if they 
satisfy the conditions 

     0,,;0,,  zyxzyx DN  on ko (2.3.2)  

     In such a case, equations (2.3.2) define uniquely the closed curve ko confining 
the chamber orifice. The function M(x,y,z) in (2.3.1) remains arbitrary because 
of the necessary ability of the constitutive form (2.3.1) to create the level 
functions  for chambers of optional shapes. M gains such an ability if written 
as the sum 

   mmM a  ; Mm ,...2,1  (2.3.3) 

in which the functions m(x,y,z), the real coefficients am, and their total number M 
are free. Due to their characteristics, N and D can be named the orifice 
functions and M the shaping function. 
     Constructing the one-parameter level surface system Si by means of the 
constitutive form (2.3.1) is possible for chambers, the geometry of which yields 
the unique field of direction cosines through partial derivatives of .  Therefore, 
the knowledge of the level function (x,y,z) for a given chamber is a decisive 
step in utilizing the theory.  

2.4 The orthogonal velocity field 

Generally, in every chamber volume V a fluid may move in any direction or 
path. Then, the velocity vector a = iu + jv + kw yields its components an normal 
to Si through the direction cosines by the well-known relation  

 cwcvcuan
321   (2.4.1) 

     Decomposition of any vector a into its normal component an and other two 
components a1 and a2 satisfies the vector sum 

 nnna naaa  2211  (2.4.2) 

in which n1, n2 and n are unit vectors of its components differing generally from 
zero. One may be however interested in a special type of the velocity field in V 
– i.e., for which the following applies: 
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 01 a  ;        02 a  ; qan    (2.4.3) 

     The velocity vector q = nq of such flow should be in each point of domain V 
perpendicular to any Si because of (2.2.2). Therefore, the system of space curves 
sj, being perpendicular to the Si surfaces (2.2.1), has to be identical with the 
stream line system of such flow, which can be named as orthogonal. The system 
of the one-parameter level surfaces (2.2.1) thereby became the system of the 
normal cross-flow surfaces. The 3-D velocity field of such flow has been defined 
by the normal component q and by the direction cosine field. Indeed, projecting 
q on coordinate axes, one obtains all three velocity components through the 
relations 

 cqu 1 ;       cqv 2 ;   cqw 3  (2.4.4) 

     These equations together with (2.3.3) show the main feature of the presented 
theory. It describes the 3-D velocity field by means of its normal component q 
only. Such a step means significant simplification of the flow image in V. 

3 Mass conservation law for orthogonal flow 

After using (2.4.4), the continuity equation as the differential equivalent of the 
mass conservation law for a compressible fluid flow takes the form 

 
 

0








nqdiv
s

q

t


 (3.0.1) 

     For an incompressible fluid, this equation simplifies into 

 0  



nqdiv
s

q
 (3.0.2)  

     The partial derivatives of the specific mass  and the normal velocity q with 
respect to stream line s signify the intrinsic derivatives along s. Writing the 
equation (3.0.2) in the explicit (not intrinsic) form one obtains 

 nqdiv
z

q
c

y

q
c

x

q
c 










 321  ( 3.0.3) 

     If the unit vector n(x,y,z) is known, equation (3.0.3) represents a partial 
differential equation of the first order for a single unknown variable q(x,y,z,t). Its 
corresponding characteristic system of equations defines the stream line system 
sj. 

4 Momentum conservation law for orthogonal flow 

In performing the task stated, we proceed from the known integral form of the 
momentum conservation law, see Lojcianskij [7],  
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  




 

v s
ndS

dt

d
pF

a  (4.0.1) 

in which the vector 

 3
3

2
2

1
1 pppnp cccn    (4.0.2) 

of forces acting up to fluid volume V through its boundary surface S is defined 
by stress tensor Π and unit vector n of the normal to S, where the vectors p1, p2, p3 
are given through a linear combination of the stress tensor components pij by 
Navier-Stokes (N-S). 

4.1 Certainty and uncertainty of direction field of flow as the determining 
factor of the differential form of momentum conservation law 

Equation (4.0.1) in 3D space corresponds with three independent equations for 
three velocity vectors, u = ui, v = vj, w = wk. In the orthogonal flow theory 
presented, this three-unknown-vector field has been defined by means of a single 
vector q = nq, where n = n(x,y,z) is a directional unit vector of the external 
normal to level surfaces (2.2.1). Because the vectors u,v,w ceased to be mutually 
independent, consistence of the theory requires transformation of the law (4.0.1) 
into a single momentum equation only as a crucial point of the theory. 
     With the exception of the last but decisive step, we would apply the known 
procedures used by deriving the N-S equations. Transforming the law (4.0.1) 
into its differential equivalent, the first step is made by means of the Gauss 
integral theorem. Applying this theorem upon the N-S tensor components, one 
substitutes the surface integral in (4.0.1) by the volume integral according to 
equation 

         
S V

zyxn dVwpvpupdS  kjip  (4.1.1) 

where the symbol Δ indicates the Laplace operator on velocity field and  is the 
viscosity coefficient.. This relation enables to express the integral law of 
momentum conservation (4.0.1) through the volume integral of vector 

   0321  dVAAA
V

kji  (4.1.2) 

with the scalar components (A1,A2,A3) given by  

   





  xxx divup

dt

du
A a

3

11
1 


 (4.1.3) 

   





  yyy divvp

dt

dv
A a

3

11
2 


 (4.1.4) 
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   





  zzz divwp

dt

dw
A a

3

11
3 


 (4.1.5) 

     Here appear kinematic viscosity , pressure p and external forces potential . 
The spatial partial derivatives are expressed through indexes x,y,z. The standard 
proceeding based on arbitrariness of the volume V transforms (4.1.2) in to 

 0321  AAA kji  (4.1.6) 

     The next step in current obtaining the N-S equations is projecting the vector A 
= iA1+jA2+kA3 in (4.1.6) successively in all three directions x,y,z. It yields the N-
S equations as the scalar solution of (4.1.6) defined by zero components  

 ,01 A ,02 A ,03 A  (4.1.7) 

     The vector equation (4.1.6) is general and valid also for the orthogonal flow. 
Therefore, the method of scalar solutions of (4.1.6) will be decisive in the 
following treatment. The way used gives just the N-S equations (4.1.7). For 
obtaining the other particular solution of (4.1.6), it was important to perceive and 
utilize that the vector projection into a selected direction with a scalar result is 
equivalent to the scalar product of two vectors. For example, the N-S equations 
(4.1.7) have appeared as the projections of A into coordinate axes. But the scalar 
products iA, jA, and kA produce the same result, what is important for further 
steps. 
     The aim is however to obtain just a single scalar equation from the vector one 
(4.1.6). One can get it by projecting the vector A into the direction of the unit 
vector of the normal n defined by equation (2.2.2). Because such a projection is 
equivalent to the scalar product nA, multiplying (4.1.6) by n from (2.2.2) and 
respecting the scalar products ii=jj=kk=1, ij=ik=jk=0 one obtains the wanted 
scalar solution of (4.1.6) in the form 

 03
3

2
2

1
1  cAcAcA  (4.1.8) 

     With components (4.1.3)-(4.1.5), equation (4.1.8) becomes an equivalence of 
the N-S equations (4.1.7) for the normal velocity component q and the pressure 
p. After the continuity equation (3.0.1), it yields the second equation for two 
dependent variables. It means the closed system of equations for the orthogonal 
flow has been just obtained. Of course, in case of the compressible fluid, a 
suitable function p or p is assumed to exist for this purpose. Nevertheless, 
appearance of (4.1.8) demands still certain explanation. 
     The way of obtaining the equation (4.1.8) has been correct and without any 
limitation regarding the direction field n. Therefore, (4.1.8) also applies to 
general, unspecified fluid flow. But the N-S system (4.1.7) does the same. This 
plight is, of course, solvable by the fact that the N-S system (4.1.7) can be 
derived from equation (4.1.8) as well as. Therefore, these two scalar solutions of  
equation (4.1.6) are not mutually independent and solution (4.1.8) is superior. 

110  Fluid Structure Interaction VI

 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 115, © 2011 WIT Press



4.2 Momentum equations of the orthogonal flow of viscous fluids 

Deriving the resulting explicit form of the momentum equation (4.1.8) is now 
only a routine question. It consists mostly of elimination procedures. For the 
velocity component elimination in the system of (4.1.3) to (4.1.5), equation 
(2.3.4) is prepared. The formal algebraic properties of intrinsic derivatives and 
direction cosines (their sum of squares = 1, see Korn and Korn [6]) will be 
utilized there. Then the summation of the intrinsic total derivatives of the 
velocity components in (4.1.8) seems to be the simplifying step for 
transformation 

 
dt

dq

dt

dw
c

dt

dv
c

dt

du
c  321  (4.2.1) 

     Equation (4.2.1) applies generally, not just for the steady direction field n 
derived from the level surfaces (2.2.1). Specifying now dq/dt according to the 
same properties of direction cosines, one obtains 

 
s

q
q

t

q

dt

dq








  (4.2.2) 

     Summation of the pressure and external volume force gradients enable one to 
use the intrinsic operator  /s. Then, the momentum equation (4.1.8) can be 
written down in the semiexplicit form 

 fS
s

pq

st

q 





















 1

2

2

 (4.2.3) 

where the right-hand side Sf  represents the shear stress tensor by N-S. 
Therefore, individual members representing friction forces in (4.1.8) make the 
sum 




































z

div
wc

y

div
vc

div
ucS f

aaa
3

1

3

1

3

1 321

x
 

     Use of the intrinsic formalism  /s simplifies this sum, yielding 

s

div
wcvcucS f





a

3

1321  

     In summing these Laplacians, the sum of squares of direction cosines (=1) 
appears and simplifies the treatment. Then after eliminating the velocity vector a 
through (2.4.4), the sum Sf becomes 

 





 









 nqdiv
s

q

si
ciciqqS

f 3

13

1
 (4.2.4) 
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     Therefore applying (4.2.4), one can write down the momentum equation 
(4.1.8) in the semi-explicit form 















 

























 nqdiv

s

q

s
qq

s

pq

st

q

3

11

2

2




 (4.2.5) 

where the coefficient (x,y,z) has been given by 

   



3

1

332211,,
i

ii cccccccczyx  (4.2.6) 

     This equation is an equivalence of the N-S equations for the orthogonal flow 
of the Newtonian fluid. Together with the continuity equation (3.1.1), they form 
the system of partial differential equations for the pressure p and the velocity q. 
This system is just closed, if the direction field n of the vector q is known. 
     The fully explicit form of the momentum equation (4.2.5) means to write it 
without the intrinsic formalism s / . But the use of all three spatial derivatives 
should require a sensible longer record of (4.2.5). Moreover, the conservation 
law (4.2.5) for the incompressible fluid can be put down very shortly, i.e. 

 fvS
s

E

t

q









 (4.2.11) 

where 

 

p

qE 2

2

1
 (4.2.12) 

is the unit energy of flow. The right-hand side Sf in (4.2.11) defines the slope of 
the unit energy line, i.e., the energy loses along the stream line s with 

 qqS f   (4.2.13) 

     The momentum equation (4.2.5) as well as its conservation form (4.2.11) has 
been derived for the orthogonal flow for which the direction field n follows from 
the level surface system (2.2.1). 

5 Some applications for chambers of simple geometry 

5.1 Application of the constitutive equation for sphere and slanted ellipsoid 

Obtaining the level function  for a spherical chamber with a single orifice 
through the constituent relations (2.3.1)-(2.3.3) is very simple. The choice of an 
orifice and its boundary k0 is a starting step. If the circular orifice is set at the 
plane z=0, then two spherical surfaces are suitable to consider for conditions 
(2.3.2). For the numerator in (2.3.1), it may be 

 
2

0
222 rzyxN   (5.1.1) 
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where 0r  is the orifice radius. The denominator demands other sphere, but 
crossing the first one through k0. Because its radius r is arbitrary, it is most 
simple to choose that r  . Then, 

 zD   (5.1.2)  

     The building of  ends at the choice 0M . Applying these results in 
(2.3.1) and (2.2.1), one can write equation of the level surface system Si

  

   izzrzyx 2/2
0

222   (5.1.3) 

where the variable parameter ii z  in this case means the position (altitude) 

of central points of the spherical surfaces Si above the plane z = 0.  
     An example of application with nonzero M is still relatively simple even for 
the slanted ellipsoidal chamber; see Fig.2. If the chamber is symmetrical with 
respect to plane y = 0, then three points on the original (starting) S =S3 are 
needed to put down the sufficient conditions to get the level function  uniquely. 
While the orifice functions can stay given by (5.1.1), (5.1.2), the shaping M 

requires M = 2. Its simplest form is M = a1x + a2z and its use in (2.3.1) and 
(2.2.1) yields the level surface system 

   izaxazrzyx  21
2

0
222 /  (5.1.4)  

 

 

Figure 2: Level surface systems Si for the slanted ellipsoid chamber. Its level 
function (5.1.4 originates from the constitutive form (2.3.1 with 
a1=0.333 and a2=-0.146 after applying m at the points Pm, 
m=1,2,3.  
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     Besides a1 and a2, a original value of i is also unknown here. But three linear 
equations for these parameters follow from (6.1.4), if written down for three 
suitable points (x,0,y) on S3. Of course, the orifice functions alone have fixed two 

other (singular) points 02,1 rx   on S3.. The choice of points (x,0,z) and the 

obtained numerical values of a1, a2, and 3 are seen in Fig.2. The resulting 
chamber is an inclined ellipsoid. Its crossing with the planes x = const. and y = 
const. creates ellipses, while z = const. makes circles. 

5.2 Parameters divn and  =  cc ii  for governing equations of the 

orthogonal flow in the spherical chambers 

Presence of the vector ),,( 321 ccc  in both basic equations demonstrates impact 

of the chamber geometry on velocity and pressure fields inside the chamber. 
Therefore, it is interesting to know what values the respective parameters may 
reach. In the event of a spherical chamber, equation (5.1.3) allows us to answer 
this question. Components of the directional vector n resulting from (5.1.3) are 

 Sxzc /21  ; Syzc /22  ;   Sryxzc /2
0

2223   (5.2.1) 

and the denominator 

 2
0

222 rzyxS  . (5.2.2) 

     According to (2.2.3), the scalar components (5.2.1) grant the divergence 

 Szyx zccc /4321 ndiv  (5.2.3) 

     One can determine the value of the sum  for the direction field (5.2.1) by 

applying (4.2.6). It is possible even without deriving Laplace’s ci  with the 
result 

 
2

23

1

4

si

ii z
cc


  



 (5.2.4) 

where s is the same as in (5.2.2). 

6 Summary 

The study presents the theory of orthogonal flow of a real fluid in elastic 
chambers with a single orifice. The elastic chamber is understood to be a space 
bounded by movable material boundary S, which is pliable with respect to 
normal forces. The nonslip condition and the continuity of flow on its material 
boundary are those physical factors that lead to the existence hypothesis for the 
orthogonal flow.  The characteristic feature of this flow is that the fluid motion is 
perpendicular to the moving wall S and to one-parameter level surfaces Si 
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defined in V by the level function  in the equation (x,y,z)=i through the 
constant values of the parameters i, i = 1,2.... . 
     Using the vector algebra tools, the continuity equation (3.0.1) and the 
momentum equation (4.2.5) for compressible fluids and their equivalents (3.0.2), 
(4.2.11) for incompressible fluids have been derived as the main product of the 
theory. The obtained result as the closed system of two equations for the pressure 
p(x,y,z,t) and the normal velocity q(x,y,z,t) represents the mass and momentum 
conservation laws for the real Newtonian fluids with the shear stress tensor by 
Navier-Stokes. The presented theory carries the possibility to simulate the 
dynamics of 3-D orthogonal flow in a single-orifice elastic chamber using the 
system of two equations only. 
     For obtaining the one-parameter level surface system Si for any chambers of 
real geometry, the constitutive form (2.3.1) of the level function (x,y,z) has 
been proposed and applied for the sphere and ellipsoid chamber as a sample. 
     The flows near or equal to the orthogonal flow are assumed to occur in certain 
technical objects as well as in some cavities, bags and cells of live organisms. 
The orthogonal flow should be regarded as a special kind of flow.  
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