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Abstract

Torsional and bending mode vibrations of a hollow cylinder shall be used for
combined measurement of density and viscosity of a fluid. The employment of
two different vibration modes has the advantage that modes with good sensitivity
for either density or viscosity measurements can be used. For a detailed discussion
of the dependencies of the sensitivity, a description of the fluid forces and a model
of the sensor are required. Analytical solutions for the fluid forces acting on
an oscillating cylindrical structure usually consider a two-dimensional situation.
FEM simulations are performed in order to investigate the suitability of such
solutions in order to describe fluid forces in a three-dimensional situation and for
different bending modes. For the case at hand, an analytical relationship between
the resonance frequency and the density of the liquid can be formulated. This
analytical relationship forms a valuable basis for further investigations.
Keywords: vibration sensor, bending, density and viscosity.

1 Introduction

In many industrial production processes the control of fluid properties plays a key
role. Monitoring of fluid density and viscosity is of particular importance in food,
cosmetics, petrochemical, and general chemical industry. Examples of applications
are density and concentration measurements in beverages, in intermediate products
of refineries or in fuel blends.

In the literature several resonator sensors for the combined measurement of
density and viscosity are proposed. Krall and Sengers [1] evaluates the damping
and oscillation period of an oscillating disk. Da Mata et al. [2] presents a vibrating-
wire sensor, for which the tension in the wire is determined by the hydrostatic
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forces on a sinker, that is attached to one end of the wire. The sensor is run in
forced mode, from which resonance frequency and bandwidth of the resonance
peak are extracted, and in free decay mode, from which oscillation frequency and
logarithmic decrement are obtained. From these quantities the fluid properties can
be determined.

A detailed theory and design criteria for density and viscosity sensors based
on flexural vibrations of a rod which is clamped on both ends and surrounded by
a fluid are presented in Retsina et al. [3, 4]. Here too, the use of two different
modes of operation is proposed. A forced mode where the resonance frequency is
measured in order to obtain the density of the liquid (viscosity known). Then the
setup is run in free decay mode, where the logarithmic decrement is measured in
order to obtain the viscosity of the fluid (density known). It must be noted, that
both density and viscosity could be measured solely with one mode of operation
(forced or free decay), but either the viscosity or density obtained this way would
be less accurate. An application of the presented theory is given in Bett et al. [5].

In the patent literature (Fitzgerald [6]), an in-line vibratory viscometer -
densitometer is found which consists of a hollow tube clamped on both ends,
and with the fluid flowing through the tube. The tube is excited to simultaneously
oscillate in a flexural and a torsional mode. The power required to maintain a
constant amplitude of the torsional vibrations is related to the fluid viscosity.
The fluid density can be inferred from the resonance frequency of the flexural
vibrations.

Literature on combined density and viscosity measurement is also found for
micromechanical sensors. Examples are vibrating plates (Goodwin et al. [7]) or
vibrating microcantilevers (Ghatkesar et al. [8]). The setup in Ghatkesar et al.
[8] consists of arrays of prismatic microcantilevers. The presented experimental
study investigates the amplitude and phase spectra of these cantilevers for 16
different modes, and in different fluids. Some interesting observations considering
the sensitivity of different modes on density and viscosity are presented.

The sensors discussed above, except those of Fitzgerald [6] and Ghatkesar et al.
[8], make use of only one oscillation mode (usually the fundamental mode). As
a consequence thereof, usually only one fluid property (density or viscosity) can
be determined with satisfying accuracy. These measurements therefore rely on the
knowledge of one fluid property from the literature, from other measurements or
have to employ another vibrational mode. Clearly, the employment of different
oscillation modes with good sensitivity for either density or viscosity would be
beneficial.

The aforementioned sensors rely on a theoretical model to relate measured
quantities to the fluid properties. These models in turn require a proper description
of the fluid forces acting on the oscillating structures. An aspect which seems to
have gained little interest so far are edge effects in the description of the fluid
forces. In Retsina et al. [3] for example, it is assumed that the radius of the
oscillating rod is much smaller than the length of the rod, and axial effects can
be neglected. Also the theoretical model to which the measurements in Ghatkesar
et al. [8] are compared, is based on fluid forces calculated for a thin blade of infinite
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length. A more detailed investigation of such boundary effects would provide a
better basis to judge their influence on the measurements.

In the present work a sensor is considered which is based on a hollow cylinder
that performs torsional and flexural oscillations. The employment of these different
vibration modes has the advantage that good sensitivity can be achieved for either
density or viscosity measurements. In this regard the functionality of an existing
viscosity sensor (Dual [9], Dual and O’Reilly [10] and Hausler et al. [11]) based
on a torsionally vibrating rod shall be extended to include the ability to perform
density measurements using bending vibrations.

In this text, the modeling of a flexurally vibrating hollow cylinder for density
measurements is considered. The setup and the measurement principle of the
sensor are presented in section 2. In section 3.1 a mechanical model of the
resonator is introduced. Section 3.2 is owed to the description of the fluid forces.
Finally in section 3.3 an analytical model of the fluid-loaded sensor is presented.

2 Setup and measurement principle

The sensor which is used in this work is sketched in Fig. 1. It consists of a body (a),
an outer hollow cylinder (b) which on his outer face is in contact with the fluid,
a connecting piece (c) which makes a connection to an inner hollow cylinder (d)
where at the free end a permanent magnet (e) is attached. A coil bobbin with two
coils (f ) is mounted on the body. The coils and the polarization of the permanent
magnet are aligned in a way such that an alternating voltage leads to bending or
torsion moments acting on the permanent magnet. Therefore the sensor can be
excited to perform either flexural or torsional vibrations. The sensor is in contact
with the fluid along the outer surface of the outer hollow cylinder and the front
side of the connecting piece.

A phase-locked loop (PLL) is used in order to measure the resonance frequency
and damping of the oscillating system. The PLL allows to stabilize the phase
between the harmonic excitation signal and the harmonic velocity of the oscillating
structure. Under laboratory conditions, the velocity of a point on the outside of the

Figure 1: Schematic representation of the resonator sensor (arbitrarily scaled).
(a) sensor body, (b) outer hollow cylinder, (c) connecting piece, (d) inner
hollow cylinder, (e) permanent magnet, (f ) coil bobbin with coils.
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outer cylinder can be measured using a laser doppler vibrometer. Otherwise the
induction caused by the permanent magnet in a measuring coil is evaluated to
measure the velocity.

The PLL controls the excitation frequency in order to maintain the desired phase
between excitation and velocity signal. If excitation moment and velocity are in
phase (phase difference of 0 ◦) the system is in resonance.

3 Modeling

This chapter discusses different aspects of a model describing the flexural
vibrations of the sensor. A detailed model regarding torsional vibrations can be
found in Dual [9].

3.1 Description of the mechanical resonator

The outer hollow cylinder of the sensor which is in contact with the surrounding
fluid forms the actual ’sensing’ part. The inner hollow cylinder, while being part
of the oscillating structure, is basically necessary to excite the structure. In a first
modeling approach the sensor can be described as a beam which is clamped at
one end and excited by a moment acting on the free end. The situation under
consideration is sketched in Fig. 2. The beam dimensions and material parameters
are given by the outer hollow cylinder of the sensor. They are given as outer radius
R, beam length L, cross-sectional area A, second moment of area Iz , density ρB

and Young’s modulus E. The harmonic excitation is described by the moment
M(t) = M0e

iωt.
The above consideration fairly simplifies the actual situation. A more detailed

description is desirable but it turns out that it is extremely difficult to build an
analytical model that accurately describes the complete sensor assembly. The
proposed simple model nevertheless provides some useful insights into the fluid-
structure interaction of the sensor.

Applying Euler–Bernoulli beam theory, the differential equation describing the
deflection u(x, t) of the flexural vibrations is given by eqn. (1) in which q(x, t) is
a distributed transverse force.

ρBAu,tt + EIzu,xxxx = q(x, t) (1)

The solution of the above equation is of the form

u(x, t) = [ãeikx + b̃e−ikx + c̃ekx + d̃e−kx]eiωt (2)

Figure 2: Simplified beam model.
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in which k is the wavenumber and ã, b̃, c̃, d̃ are complex constants that are
determined by the boundary conditions. In vacuum the wavenumber is given as
k40 = (ρBAω20)/(EIz) with ω0 as the angular rotational velocity in vacuum.

3.2 Description of fluid forces

The fluid considered in this work is a viscous, incompressible, Newtonian fluid.
In the case of a beam immersed in a fluid, the distributed transverse force q(x, t)

in eqn. (1) describes the influence of the surrounding fluid on the oscillating
beam. A viscous fluid has two effects on the oscillations of the beam. It leads
to a viscous damping force and to an additionally accelerated mass (added mass
effect). The former describes a force proportional to the beam velocity while the
latter is proportional to the beam acceleration. The distributed transverse force can
therefore generally be expressed as

q(x, t) = (α + iβ)u,t (3)

in which α and β describe damping force and added mass, respectively, and are
frequency dependent.

Analytical solutions for α and β in the case of harmonically oscillating cylinders
in viscous, incompressible fluids can be found in literature (Kremlevskii and
Stepichev [12], Retsina et al. [3]). A solution taking into account the effect of a
cylindrical boundary around the fluid is presented in Chen et al. [13]. All of these
analytical solutions consider a two-dimensional situation, i.e. a rigid, infinitely
long cylinder. As proposed by Kremlevskii and Stepichev [12], one could think
of the beam to be composed of infinitesimally thin disks, and for each of them
the two-dimensional solution holds. The question arises, how accurate such a
description reproduces the actual three-dimensional situation. Especially in the
present case of a relatively short clamped-free beam, it is of interest how accurate
the fluid forces can be described near the free end of the beam and how the
force distribution changes depending on mode shapes. In order to answer these
questions, the analytical results are contrasted with results from FEM simulations.

A FEM model incorporating the entire mechanical structure of the sensor, a
description of the fluid, and the fluid-structure interaction would become very large
and cannot be handled computationally. In order to investigate the fluid forces
acting on the flexurally oscillating outer hollow cylinder of the sensor, it is for
most cases sufficient to consider a cylindrical wall which oscillates according to
the deflection pattern under vacuum. (This implies that the mode shapes do not
change under the influence of the fluid.) For the simulation considered here, the
deflection pattern is extracted from an eigenfrequency analysis of a detailed FEM
model of the entire sensor (Fig. 1). The fluid domain is bounded by a cylindrical
wall with radius Rb. Simulations are carried out using the COMSOL Multiphysics
software. The fluid is modelled as an incompressible, viscous fluid and is described
by the Navier–Stokes equations. All parameters relevant for the simulation are
summarized in Table 1. (The ratio of the radii Rb/R is 8. According to Chen et al.
[13] the influence of the fluid boundary becomes negligible in this case.)
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Table 1: Simulation parameters.

Cylinder radius R 0.004 m

Cylinder length L 0.0605 m

Boundary radius Rb 0.032 m

Fluid density ρ 844 kg/m3

Fluid viscosity η 978 mPa s

For the evaluation of the simulation the oscillating cylindrical wall is divided
into small disks and the fluid force (component in the direction of the oscillation)
is integrated over the surface of each disk. Also the average amplitude of the
deflection velocity for each disk is extracted. Applying the description for the
fluid forces according to Chen et al. [13], the extracted velocities can be used to
calculate the theoretical fluid forces. These can then be contrasted to the integrated
forces. The results (for second and third bending modes) are shown in Fig. 3, where
the magnitude of the fluid forces along the cylinder is displayed.

Both graphs in Fig. 3 show a good correspondence of the fluid forces from
simulation and analytical description except near the free end of the cylinder.
At the free end, the force obtained from FEM simulation is smaller than the
analytically calculated force. This can be explained by the fluid flowing around
the free end of the beam instead of flowing in a plane perpendicular to the beam
axis. Due to this shunting of the fluid, the theoretically expected fluid forces cannot
build up. As the region with larger deviations between the fluid forces according to
simulation and analytical description pertain to a small part of the whole cylinder
surface, its influence on the oscillation is not expected to be dramatic. At least for
the considered case the analytical description seems to be appropriate to describe
the fluid forces in a three-dimensional case.
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Figure 3: Distribution of fluid forces along the flexurally oscillating outer
cylindrical surface of the sensor according to FEM simulation (◦) and
according to an analytical description from Chen et al. [13] (�). Left:
Second bending mode. Right: Third bending mode.
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3.3 Analytical model for fluid-loaded resonator

Although FEM is a valuable tool and offers solutions to model fluid-structure
interaction problems, we strive here for an analytical model. The motivation
is to obtain a model, which allows solving the inverse problem, i.e. to relate
resonance frequency to fluid density. Such a model then allows performing
parameter studies in order to find an optimal sensor design. Further, in contrast
to a phenomenologically based relation between measured quantities and fluid
properties, an analytical model can provide useful insight into the physics of the
problem.

In this section an analytical model for a cylindrical beam which is clamped
at one end and excited by a moment acting on the free end (Fig. 2) and which
is surrounded by a viscous incompressible fluid is derived. The fluid domain is
considered as unbounded.

In this model the fluid forces are expressed according to Kremlevskii and
Stepichev [12] for the case that the penetration depth δ =

√
( 2ηρω ) (in which ρ

and η denote fluid density and viscosity respectively) in the fluid is much smaller
than the radius R of the cylinder (δ/R � 1). The factors α and β in the distributed
transverse force q(x, t) (eqn. (3)) can therefore be written as

α = −2
√

2πR
√

ωρη , β = −2
√

2πR
√

ωρη − πR2ρω (4)

Applying the separation ansatz u(x, t) = ekxeiωt leads to the following
equation for the wavenumber k:

k4

k40
= 1 − β

ρBAω
+ i

α

ρBAω
= Peiϕ (5)

in which P , ϕ are magnitude and phase of the ratio k4/k40 and are introduced for
convenience.

The wavenumber k is complex, and will be denoted as

kc = k0P
1/4[cos(ϕ/4) + i sin(ϕ/4)] = kr + iki (6)

Employing the complex wavenumber kc in eqn. (1) and taking into account the
boundary conditions according to Fig. 2, a transfer function relating the angular
rotational velocity w = u,xt to the amplitude M0 of the moment excitation can be
derived:

w

M0
=

iω[cosh(kcL) sin(kcL) + cos(kcL) sinh(kcL)]
EIzkc[1 + cos(kcL) cosh(kcL)]

(7)

Resonances are found in above transfer function at oscillation states where the
phase is zero or where the imaginary part of the transfer function is zero. These
states are defined by the complex wavenumber times beam length product kcL or
in more detail on the relation between krL and kiL. Fig. 4 shows a contour plot
describing the ratios between krL and kiL for which resonances occur. Numerical
evaluations of the above transfer function shows that for densities between 400
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Figure 4: Contour plot of krL and kiL at resonance.

and 2000 kg/m3 and viscosities between 1 and 1000 mPa s the values of kiL stays
below 0.05. In this region the values of krL are almost constant. (The ratio between
krL(kiL = 0.05)/krL(kiL = 0) is 1.0029 for mode 1 and 1.0004 for mode 3.)

Assuming therefore kr to be constant and ϕ = 0 one can write kr = k0P
1/4. A

series expansion of P around an arbitrary value ρ = ρ0 for the fluid density up to
powers of (ρ−ρ0)1 and reformulating the expression for kr leads to the expression

ρ = ρ0

(
1 +

(ω0
ω )2

√
( ) − ( )

m̃[ ]

)
(8)

in which

( ) = 8δ̃2m̃2+(m̃+1)(m̃+4δ̃m̃+1) [ ] = 4δ̃2m̃+(m̃+1)+δ̃(3m̃+1) (9)

and ω is the angular rotational velocity of the beam in the fluid, δ̃ = δ0/R
with δ0 =

√
( 2ηρ0ω ) as the penetration depth in a fluid with density ρ0, and

m̃ = πR2ρ0/(AρB). m̃ is denoted as the mass ratio between fluid and sensor.
Having this formula at hand, it is now possible to relate the fluid density to the

resonant frequency in fluid.
The quantities that need to be known in order to evaluate eqn. (8) are the angular

rotational velocity in vacuum ω0, the outer radius R of the cylindrical beam, fluid
viscosity η, and the mass per unit length of the beam AρB . The angular rotational
velocity in vacuum ω0 and the outer radius R can be measured. The fluid viscosity
η is obtained from the viscosity measurement. The mass per unit length of the
beam AρB is best evaluated through calibration measurements, because both the
material density ρB and the cross-sectional area A of the hollow cylinder are not
easily determined accurately.
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Figure 5: Relation between fluid density ρ and resonance frequency. Continuous,
dashed, and dotted lines correspond to viscosities of 10, 500, 1000 mPa s.
Left: First bending mode. Right: Third bending mode.

Fig. 5 shows the relation between fluid density ρ and the resonance frequency
for the simplified beam model and for the first and third bending mode.

After a first look at Fig. 5, it seems that the influence of viscosity on the
resonance frequency at a certain fluid density is less pronounced for the third
than for the first mode. However, this cannot be directly assessed because of the
different frequency ranges of the two modes. Consider therefore the resonance
frequencies at a density of ρ1 = 1000 kg/m3 and for viscosities of η1 = 10 mPa s
and η3 = 1000 mPa s. The frequency difference ∆fres = fres(ρ1, η1) −
fres(ρ1, η3) obtained for the first mode is 89 Hz and for the third mode 378 Hz. The
ratio between these frequency differences and the resonance frequency obtained
for viscosity η1, i.e. ∆fres/fres(ρ1, η1), takes the values 0.045 in the case of the
first mode and 0.011 in the case of the third mode. At least for the considered case
it can therefore be concluded, that the effect of viscosity on the density-resonance
frequency relation is smaller for the third bending mode than for the first bending
mode.

4 Summary and conclusions

A simplified beam model is investigated to gain insight into the fluid-structure
interaction of a sensor. In order to build an analytical model of the sensor,
a description of the fluid forces is necessary. FEM simulations show that an
analytical description of the fluid forces in two dimensions is capable to describe
the actually three-dimensional situation. An analytical relation between resonance
frequency of the resonator in fluid and the fluid density is derived. This relation
is a valuable basis for further investigations of the fluid-structure interaction.
Parameter studies can now be performed to establish design criteria for optimal
measurement sensitivity.
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