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Abstract 

The phenomenon of sudden unexpected high frequency large amplitude 
displacements of offshore structures has not been well understood since it was 
first identified in wave tank testing about two decades ago. The accelerations 
associated with the ringing displacements increased the loading by 
approximately 40%, to the despair of the designers.  
     We have decided to revisit the phenomena and have used system 
identification theory to identify mathematical models that could give such 
“burst” type responses. In the case of negative damping these effects appear. The 
model has been termed the β-damping term. By comparing predictions of the 
model with tank test data, we have found good correlations. Furthermore, the 
comparison has also revealed new insight into the use of the previously used 
models for the prediction of ringing response.  
Keywords: structural vibration, ringing, burst type response, negative damping, 
FNV method. 

1 Introduction 

The problem of ringing response (sudden unexpected high frequency large 
amplitude displacements) of offshore structures has gained much interest since 
this type of response was first identified in the wave tank while testing the 
Draugen concrete mono tower for Northern North Sea wave conditions. Further 
data from offshore has confirmed that ringing response also exists in the natural 
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environment, although the largest displacements as seen in the wave tank have 
not been reported offshore.  
     Although Faltinsen et al. [1] have proposed a model that gives the ringing 
response of offshore structures exposed to waves, using the approach of 
hydrodynamics to identify physical loading terms in steep waves that could 
cause ringing, there has been a continued search for additional mechanisms that 
could lead to ringing response. 
     In this paper we denote the type of response mentioned above for “burst type 
response”. We report a new approach to identify burst type response: We have 
studied the displacement response of a single degree slender offshore structure 
exposed to harmonic loading and have investigated different damping models for 
the oscillator. The analysis has been purely analytical while applying a Morison 
type of wave loading including both drag (viscous) and inertia (including added 
mass) terms. Theoretical modelling of the mathematical problem has given us 
“burst type” of displacement motions in certain wave conditions in the case of 
negative damping.  
     Based on this, we have searched for a physical explanation to the phenomena 
and identified that a relative velocity formulation of the drag forcing term will 
lead to said negative damping under certain conditions that are discussed in the 
paper. The formalism as proposed by Gudmestad and Connor [2] will be referred 
to when explaining the physics of the mathematical expressions. In order to 
investigate the goodness of different possible models that could describe the 
burst type behaviour of offshore structures, we have modelled the Draugen 
concrete mono tower platform as a one degree of freedom oscillator and applied 
different loading models: 
 the FNV model as described by Faltinsen et al. [1]; 
 the FNV model with viscous terms incorporated; 
 a “β damping model” as described by the above. 
     The response to the physical model of the Draugen platform in waves as 
generated in the Marintek wave tank in Trondheim has then been calculated and 
compared with the actual wave tank measurements of the platform displacement. 
The results of the analysis have confirmed the goodness of the FNV model and 
documented that the viscous effects should be implemented. Furthermore, the 
displacements found by using the β damping model have also proven to give 
results close to the wave tank measurements, a result that may indicate that 
negative damping terms might also be incorporated in an extended FNV model.  
     We underline that we have obtained what we set out to investigate: we have 
found additional analytical and physical mechanisms that may generate “burst 
type” response effects. In view of this we will express optimism that we can 
better understand the ringing phenomena.  

2 The physical problem: ringing response of offshore structures 

The response of single degree of freedom oscillators subject to wave and current 
loadings has been extensively studied, both theoretically and numerically over 
the years. 
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     For a Morison type of wave loading (Morison et al. [3]), linearization of the 
drag forcing term was discussed by Gudmestad and Connor [2] and the effects of 
considering different deterministic wave theories and integrating the total 
loading up to the free surface were discussed by Gudmestad and Poumbouras 
[4]. An attempt to extend the analysis of the effects of wave kinematics to 
irregular seas was suggested by Gudmestad [5]. Later, a number of attempts have 
been suggested to improve on the understanding of wave actions on slender 
offshore structures, see for example Skjelbreia et al. [6], Stansberg and 
Gudmestad [7] and Grue et al. [8] regarding wave kinematics. 
     The response side has been extensively studied in view of so called “ringing 
response” of structures in the sea, Stansberg [9], Jeffreys and Rainey [10], 
Faltinsen et al. [1] and Krogstad et al. [11]. This ringing response is a transient 
response that seems to be caused by an impulse type of loading (see for example 
Kvitrud [12] on structures subjected to either drag forcing terms associated with 
nonlinear kinematics, free surface effects or quadratic forcing terms 
(Lighthill [13]).  
     It has been suggested that ringing mainly occurs in steep waves, see for 
example Chaplin et al. [14] and Welch et al. [15]. These waves would give a type 
of loading resembling an impact. Reference is also made to Gurley and Kareem 
[16], from which Figure 1(a) is copied. Figures 1(b) show a “ringing like 
response” of the Kvitebjoern jacket installed in the North Sea at 190 m water 
depth. This is a slender offshore jacket responding dynamically to wave loading. 
It is, however, agreed that the ringing phenomenon is not well understood and 
standards, for example Norsok Standard N-003, [17], calls for tank testing 
whenever ringing may be a feature in the design of large volume offshore 
structures. For structures dominated by drag type loading, careful dynamic 
analysis in the time domain is required. 

3 Equations of motions and forcing function 

The general second order ordinary differential equation for the horizontal 
response y (t) of a one degree of freedom slender offshore structure when 
subjected to constant nonlinear drag loading (that is loading generated by the 
velocity U of the current) is according to experiments given by the term 
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Here:   
 m is the mass of the structure 
 k is the linear stiffness of the structure 
 D is the diameter of the slender structure  
 ρ is the density of the fluid (water) 

 C '
d is the drag coefficient for the flow 
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Figure 1: (a) Conceptual diagram showing ringing (and springing) response 
(in m) as a function of time for an offshore system under viscous 
load, from Gurley and Kareem [16]. Note that springing is a 
response phenomenon having less amplitude as compared to 
ringing. Springing could cause fatigue of members affected by this 
type of response. (b) Time history of ringing-like response of the 
Kvitebjoern jacket installed in the North Sea at 190 m water depth. 
The figure shows from top to bottom the North-South 
accelerations (mm/s2), velocities (mm/s) and displacements (mm) 
as function of time (s) for an event recorded on 01.01.2004 at 2 
p.m. 

 U is the velocity of the constant flow (current) past the structure. 

 U  Represents the absolute value of the velocity U 

     This drag type loading is in general attributed to the shedding of vortices in 
the downstream flow direction of the current. The structural damping is 
associated with the constant c, and critical damping is obtained for the case 

2

c

m



 =1 while the natural frequency of the non-damped motion is given 
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by k

m
  . As is well known in structural analysis, the damping term changes the 

natural frequency of motion to 2' 1     
     In the case of a combined wave and current loading, the nonlinear drag 
loading is according to Morison’s postulate (Morison et al. [3]) for slender 
structures (D/L≤ 0.2, where L is the wave length) given by: 
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Here:  

 u(t) is the displacement of the oscillating flow 
 du(t)/dt is the velocity of the oscillating flow 
 Cd is the modified drag coefficient for the combined flow. Cd exhibits a 

significant variation with Reynolds number (Re), Keulegan-Carpenter 
number (K) and relative roughness (k/D). In this paper we will treat Cd 

as a constant.  
     For the selection of values for Cd, in accordance with international 
recommendations, see e.g. Gudmestad and Moe [19]. It should be noted that the 
influence of the displacement of the structure on the flow is not accounted for in 
this analysis, see for example Gudmestad and Connor [2] for a discussion of the 
“relative velocity effects”. 
     In addition we have to include the mass force term (also denoted the inertia 

term)
2

2
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 , which for slender structures may be omitted as the drag 

term is dominating, see for example Sarpkaya and Isaacson [18] for criteria to be 
fulfilled to omit the mass forcing term from the analysis. It should be noted that 
the mass term is a linear term proportional to du(t)/dt and that this term would 
cause traditional dynamic amplification of the response at the resonance 
frequency, i.e. when ω = Ω. Further resonances will be triggered when 
integrating the force contributions to the free surface of the wave(s).  
     Additional nonlinear loading terms have been suggested, by for example 
Faltinsen et al. [1] and Newman [23]; the FNV method. These terms are thought 
to account for the ringing like response of structures and the FNV method 
represents to day’s state of art with respect to understanding ringing response.  
     In addition to including current in the loading term of the equation of motion, 
we should also include the effect of the motion of the structure itself on the 
forcing term, that is, we should consider relative acceleration and velocity terms 
in (2) as was suggested by Gudmestad and Connor [2]. Equation (2) (without 
current) would then read:  
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     Note that u (t) here refers to the water particle displacement while y(t) refers 
to the displacement of the structure. The right hand side of equation (3) 
represents the forcing term, taking the relative motion of the structure into 
account.  We will in the further discussion refer repeatedly to this equation. 

4 A system identification approach to identifying an equation 
of motion with “burst type” response  

In order to identify systems with “burst type response”, our strategy has been to 
construct a vector field (time-dependent) in the plane with some of the same 
properties as observed in Figure 1(a). The work has been reported by Jonassen 
[20]. We will define three regions U1, U2 and U3 in R2, where U1 is a disk 
centred in the origin with radius r1, the set U2 is an annulus centred on the origin 
with inner radius r1 and outer radius r2 and the set U3 is an annulus centred on the 
origin with inner radius r2 and outer radius r3. Here we have 0 < r1 < r2 < r3. We 
will call U1 the fixed-point region, U2 the gluing region, where bump functions 
are used to smoothly transform the oscillator in U1 to the oscillator in U3, and U3 
the outer region. 
     Our aim is to construct a vector field in U1 with the following (geometrical) 
properties: 

 The vector field should model an oscillator. 
 The non-forced field should have a fixed point in the origin. 
 The fixed point should periodically or almost periodically change 

stability, from an attracting fixed point to a repelling fixed point. 
 The model should be as simple as possible. 

     Clearly, there are a large number of candidates for such models, both among 
linear and nonlinear oscillators. To meet our last aim we start with a linear 
oscillator of the form: 
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where a (t) is a periodic or almost periodic function with −1 ≤ a (t) ≤ 1 and min a 
(t) = −1 and max a (t) = 1. This choice will clearly fulfil our other aims too 
(b(t)=0 represents the non-forced field). For simplicity we may choose a (t) 
periodic, for example:  

)
10

t
sin()t(a                                                                                   (5) 

Implying that the stability of the origin is slowly changing compared with a 
timescale of t of order 1. We remark that even with this simple equation, one 
cannot find the exact solution in a closed form, that is, one has to give the 
solution as a power series in t. And in order to mimic the model given in 
Equation (3) we will choose 
 

b (t) = sin (kt)| sin (kt)|                                         (6) 
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     In our numerical simulation in Figures 2(a) and (b), we have used k = 5 and  
ω = 1. Figure 2(a) shows the local behaviour of the model in the extended region 
of U1. Only the x coordinate is shown here for 0 ≤ t ≤ 200. Note that this model 
has “bursts” of the trajectory into the regions U2 and U3 if the numbers ri, i = 1, 
2, 3 are chosen properly. In region U3 the full model is chosen to be a Duffing 
type oscillator, and the bump functions are polynomials. Figure 2(b) shows the 
full orbit in the phase space. For further discussion on the details of the 
modelling, reference is made to [20]. 

5 On reanalysis of model tank test data 

The numerical prediction of nonlinearly generated, burst-like resonant 
oscillations corresponding to “ringing” on vertical columns of offshore platforms 
in steep waves has been addressed in an introductory study by Marintek [21]. 
Two basically different approaches were investigated and compared through 
simple models:  
 

 
                                                  (a)                                                       (b) 

Figure 2: (a) A typical behaviour in the fixed-point region, the x coordinates 
only. (b) A typical behaviour in the fixed-point region, here the 
trajectory in the phase space region. 

 Higher-order wave loads in steep waves exciting a linear dynamic 
system using the FNV load model, and 

 Linear excitation combined with a nonlinear, time-varying damping 
model where the damping factor is correlated with the excitation signal. 

     The models were also compared to linear modelling and to model test data on 
a mono tower offshore platform. The model test data used for comparison were 
made available, by permission from Shell, from the Draugen mono tower model 
tests carried out in the Marintek Ocean Basin in 1992 [22]. The results showed 
that both models were capable of generating “burst events” similar to ringing and 
dynamic characteristics of the events were comparable to those from the 
measurements. The findings represent a verification of the FNV load model, as 
well as a confirmation that also a nonlinear damping model can lead to almost 
the same dynamic events. A one-degree-of-freedom oscillator described by the 
equation of motion was considered: 
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Here: 

 fe (t) is the external, time-varying excitation load (a hydrodynamic wave 
force),  

 0  (k/m) is the natural angular frequency; m is the oscillator mass, K 
is the stiffness, 

 b (t)   b0 + b (t) is the damping “constant” consisting of one linear 
term b0 and one time-varying term b (t). 

 All the terms are normalized by dividing with the oscillator’s mass m.  
 The stiffness k is assumed to be constant, which gives a linear restoring 

spring force. 
 

Three special versions of the force formulation were investigated here: 
 Linear:  The inertia term in Eq. (7) was integrated up to the mean water 

surface, and only 1st order integrated force terms were included. The 
drag term was excluded.  

 FNV (linear + 3rd order) [1, 23]: The inertia term in Eq. (7) was 
integrated up to the linear instantaneous wave elevation surface, and 
third order integrated slender body force terms were included. The drag 
term was excluded.  

 FNV + viscous: As FNV above, but also including the drag term. 
A second-order inertia force is also present in the FNV formulation [1, 23], while 
for simplicity here we ignore that term as it has been found previously that the 
“ringing” load phenomena are mainly connected with the third-order term [11]. 
     We assumed that the mass velocity dy (t)/dt was small compared to the water 
velocity du(t)/dt. We also assumed that in a linear formulation, the cylinder is 
slender, so that the inertia coefficient, CM, can be assumed to be constant and 
equal to 2.0. For the damping formulation, two different types were considered: 

 Linear damping,  b (t) =0 
 Nonlinear time-varying damping, with  b (t) = · fe (t)   (“-model”), 

i.e. the nonlinear damping term was assumed to be proportional to the 
excitation force 

For a given level of the relative nonlinear contribution to the dynamic response, 
the absolute value of the parameter   will depend on the actual motion / velocity 
level, so it will be different for different systems. In possible future work, on 
should establish a “normalized” parameter that will not depend on the actual 
system. Hence, the following four specific combinations have been investigated: 
1. A linear wave force fe(t) and a linear damping, i.e.  =0 
2. A nonlinear potential wave force (FNV model) and a linear damping 
3. As 2) but with a viscous wave force added (i.e. incl. the drag term in 

Morison' Eq.) 
4. A linear wave force with a nonlinear damping ( ≠ 0). It should be noted 

that the Non- Linear damping term could become negative using this model 
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6 Case study with comparison to model test response data 

The four different systems described above were applied on a specific physical 
case. The excitation force is modelled as the integrated wave force on a 
cylindrical vertical column with radius R. The water depth h corresponds to deep 
water, and the draft d of the column is equal to d (or more correctly: ranging over 
the whole wave zone water column). The column is assumed to oscillate 
horizontally in the wave direction (one degree of freedom), with a stiffness K, 
the total oscillator mass is m, and the resulting natural period is T0. The relative 
damping level corresponding to the linear damping constant b0 is, and CD 
denotes the drag coefficient of the column. 
     The system parameter values are chosen as follows: 
 R = 8.2m (as for the Draugen mono tower at the waterline [5]) 
 d = h = 330m (as for the Draugen mono tower) 
 K = 154.6MN/m (Draugen) 
 m = 100 · 106 kg 
 T0 = 5.0s (Draugen [22]) 
  = 1.5% (roughly similar to the Draugen model tests) 
 CD = 1.0,  = 8  
 Parameters: Hs=15.5m, Tp=17.8s (Ultimate Limit State (ULS) condition, 
no current) 
     Mathematically, with respect to the excitation and dynamic oscillator system 
behaviour, this corresponds to the top motions of the Draugen Gravity Base 
Structure (GBS) mono tower, installed in the Norwegian Sea and tested in scale 
1:50 in Marintek’s Ocean Basin in 1992 [22]. Thus a comparison to a selected 
Ultimate Limit State irregular wave test run from the Draugen model test data 
forms is presented below. 
     Physically, there is a clear difference between the two set-ups, since the 
Draugen tower is bottom mounted; its radius increases downwards, and it is 
dynamically flexible over the full height, while our model is a simplified one-
degree-of-freedom oscillator. It should be noted, however, that the purpose of 
this exercise was simply to see whether or not our simple model is capable of 
reproducing signals with characteristics similar to those measured, and not to 
reproduce the model test data in detail.  
     From the measured wave, a linear wave estimate was extracted according to 
the procedure in [24]. Simulated oscillator motion responses, were generated. 
One selected event of the oscillator motion is shown in Figure 3(a). The results 
are shown in full scale. The corresponding response record is in Figure 3(b). As 
pointed out earlier, a detailed quantitative comparison cannot be made between 
the simulations and the measurements, since the physical set-ups are slightly 
different. But characteristics of the signals, as well as approximate motion 
values, can be compared.  

6.1 Discussion regarding the comparison with measured data 

From Figures 3(a) and (b) we see that both the FNV load model and the  
damping model are clearly capable of generating nonlinear “burst-like” resonant 
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events similar to ringing. While the ringing events modelled by the FNV model 
can be reasonably well explained as a physical phenomenon, the results from the 
 -model will at the present stage be considered as the results from a 
mathematical exercise based on the Morison equation for load on drag 
dominated structures [2].  
     With the actual system parameters used, extreme motion responses are 
amplified typically by 30%-50%, compared to linear estimates. This has been seen 
in simulations both with the numerical wave and with the measured Draugen wave.  
     The values of the damping time-varying parameter  have been chosen 
empirically, with the purpose to obtain response characteristics that produce 
“ringing” events in steep waves, and that approximately look similar to the FNV 
results. With even more tuning and slightly different choices of, an even closer 
agreement might have been achieved, while this has not been the ultimate goal of 
this study, where we are mainly interested in whether or not qualitatively similar 
characteristics can be obtained. 

 

 
                                      (a)                                                      (b) 

Figure 3: (a) Simulated response using the four system models, Draugen 
model test. (b) Measured top motion and moment responses from 
Draugen model tests, same event as in (a). (Note that there is a 
skewness in the time scale as this has not yet been fully been 
adjusted in this figure). 

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 105, © 2009 WIT Press

308  Fluid Structure Interaction V



 

 

     It is seen that both the FNV model and the -model reproduce the 
characteristics of the “burst-like” behaviour of most of the different measured 
Draugen events, with a reasonable agreement. This represents an important 
verification of the FNV load model, as well as a confirmation that the nonlinear 
damping model is in fact capable of generating the observed nonlinear dynamic 
events with a good similarity. There are some deviations, which should be 
expected since the models are quite simplified and cannot be expected to 
reproduce all complex details. High-frequency oscillations appear to be slightly 
higher in the measurements than predicted from our present FNV load model. 
The two numerical models produce slightly different behaviours, depending on 
the actual event. As an overall observation, however, we consider that taking into 
account the simplifications made, the observed agreement is in fact quite good. 

7 Similarities between the β damping model [21]  
and the equation of motion (3) taking the relative motion 
into account 

Let us consider the nonlinear relative velocity drag forcing term of Equation (3): 
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Here 
.

y
dt

)t(dy
 is the velocity of the structural response; in general this is an 

oscillatory function. 
     There are two cases:  

1) 0}yu{
..

 , then: 
......

yyuuyu   = 
..2.2.....2.

yu2uvyuyuu   (10) 

2) 0}yu{
..

 then:
......

yyuuyu  =
..2.2.....2.

yu2uvyuyuu   (11) 

For both cases we neglect the squared term of the velocity of the structural 

response. From (10) and (11), the terms proportional to 
..

yu2 represent oscillatory 

damping and can be transferred to the left hand side of the equation of motion. 
Thus, the damping term becomes of the form b(t)   b0 + b(t) consisting of one 
linear term b0 and one time-varying term b(t) as was discussed previously. The 
damping term may become negative as follows: 
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Case 1) 
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Such a situation could arise on the downward-sloping side (backside) of the 

wave (where:
.

0u  ) when the structural motion has a negative velocity 
. .
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Case 2) 
. .
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.

0u   that will be satisfied in case 
.

0u  and 
. .

0y u   

Such a situation could arise on the upward-sloping side (front) of the wave 

(where:
.

0u  ) when the structural motion has a positive velocity
. .

0y u  . 

     In case we consider the relative velocity terms of the Morison equation, we 
see form this that it would be possible to obtain situations where negative 
damping could occur. The “burst” type of response would be initiated for 

relatively small values of the water particle velocity, i.e. for small values of
.

u , 
and such situations would occur when the wave crosses the waterline. In this 
position the water particle acceleration is at maximum and the maximum, 
whereby the effect surely could be interpreted as being caused by the inertia term 
of the loading. 

8 Conclusions and suggestions for further work 

We have presented a discussion of “ringing response” and have through a system 
identification approach identified a set of second order nonlinear ordinary 
differential equations that may give burst type responses. The key to obtaining 
such response is the occurrence of a damping term that might become negative. 
With the application of a constant structural damping term plus an oscillatory 
damping term proportional to the total force on the model, burst type of response 
that very closely match the response of a physical model in the wave tank has 
been documented. The new damping model might represent an additional 
explanation of ringing response in addition to the FNV model [1] that represents 
the “state of art” in explaining such response.  
     Further work is recommended to explore the physical properties of the 
nonlinear phenomena in more detail. Further work to understand the -model 
discussed above needs to be carried out, where also time series simulations 
(based on the Morison formula for load on drag dominated structures) are carried 
out to investigate how the model is able to generate theoretical bursts similar to 
those from ringing. In a follow-up, a review of the earlier work in [2] will be 
useful with attention to implementation of all relevant load contributors. Also the 
FNV load implementation should be further checked against direct load model 
test data such as those from [9]. 
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