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Abstract

In this paper scattering problems with elastic obstacles that are hit by an incident
acoustic wave are discussed. Underwater acoustics mainly differs from air acous-
tics in the fact that a strong coupling scheme between the structural part and the
acoustic domain is necessary. Such a scheme is discussed, using the fast multilevel
multipole boundary element method (FMBEM) to model the exterior acoustic fluid
and the finite element method (FEM) to model the structural part. To obtain a high
flexibility, an interface to a commercial FE package is established. For a high effi-
ciency, an iterative solver with preconditioning is applied. The numerical results
are compared with an analytical solution for a model problem.
Keywords: elastic scattering, fluid-structure interaction, FE-BE coupling, fast
boundary element method, multipole method.

1 Introduction

Fluid–structure interaction deals with the mutual influence of an acoustic and a
structural domain. Since water is assumed as acoustic fluid with a high density a
the structure is thin-walled, the feedback of the acoustic pressure onto the structure
has to be taken into account. As a consequence, fully coupled simulation schemes
have to be applied, which are computationally more expensive since a structural
problem and an acoustic problem have to be solved simultaneously. In this paper,
scattering problems are discussed where the structure is excited by an incident
wave. The structural part is favorably modeled using the FEM. For the infinite
fluid domain, the BEM is applied. To overcome the drawback of fully populated
BE matrices, the fast multipole method is used.
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The paper starts with the governing equations of the multifield problem. Then,
a FE discretization of the structural problem is presented. After this, the BEM
is introduced to model the exterior acoustic domain. Special attention is paid to
the fast multipole implementation. The remaining sections discuss the iterative
solution of the coupled problem and the investigation of a model problem.

2 Governing equations of the multifield problem

The governing equations of the fluid-structure interaction problem are presented
in the frequency domain with the time harmonic behavior e−iωt , where ω = 2 π f

denotes the angular frequency. The structural domain Ωs (cf. Fig. 1) is assumed to
be linear elastic with the Lamé constants λ and µ. The material is homogeneous
with the structural density �s. The corresponding elastodynamic problem for the
displacements u is given by

ω2�s u(x) + µ�u(x) + (λ + µ)grad div u(x) = 0 for x ∈ Ωs, (1)

T u(x) = ts = 0 for x ∈ Γs, (2)

and additionally a transmission condition which will be introduced later by eqn. (5).
The Laplacian is denoted by � and T represents the traction operator. The time
harmonic Helmholtz equation is applied to describe the acoustic pressure p in the
fluid domain Ωa

�p(x) + κ2 p(x) = 0 for x ∈ Ωa, (3)∣∣∣∣ ∂p∂R
− i κ p

∣∣∣∣ <
cf

R2 for R = |x| → ∞, (4)

where an additional transmission condition is given by eqn. (6). The circular wave
number is denoted by κ = ω

cf
and the speed of sound is cf. Equation (4) is called

Sommerfeld radiation condition, which ensures an outgoing wave within the exte-
rior acoustic domain [1]. A strong coupling scheme is represented by the two trans-
mission conditions

T u(x) = tf(x) = −p(x) nx for x ∈ ΓI, (5)

q(x) := ∂p(x)

∂nx

= ω2�fu(x) nx for x ∈ ΓI, (6)

where the acoustic flux q is introduced. In case of a scattering problem, the overall
acoustic field in Ωa (cf. Fig. 1) is the superposition of the incident and the scattered
field [2]

p = pinc + ps and q = q inc + qs. (7)

In what follows, the incident field ( )inc is prescribed. It is caused by a source, e.g.
a plane wave, and corresponds to the sound field in the absence of the structure.
The scattered field is denoted by ( )s.
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Figure 1: Elastic scattering: The exterior acoustic domain Ωa is in contact with
the structure domain Ωs on the fluid-structure interface ΓI. The surface
stress vector of the fluid is denoted by tf. The structural stress vector ts is
assumed to be zero.
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Figure 2: Exterior acoustic domain Ωa (left) and associated interior domain Ωi
(right). In both cases, the normal n is assumed to point inwards.

3 FE formulation for the structural problem

The FE discretization of the structural problem eqns. (1), (2) and (5) results in a
system of linear equations

(−ω2Ms − iωDs + Ks)︸ ︷︷ ︸
=:KFE

u = f f, (8)

where Ms and Ks denote the mass matrix and the stiffness matrix, respectively.
Damping may be incorporated by the damping matrix Ds. However, structural
damping is neglected in this paper. The nodal force vector f f represents the forces
due to the fluid pressure and is discussed later in Section 5. The finite element
package ANSYS is utilized to set up the matrices Ms, Ks. They are imported into
the research code by a binary interface [3]. This data exchange has to be done only
once for a given model, as Ms and Ks are frequency independent. Typically, shell
elements with rotational degrees of freedom are applied for thin structures. Thus,
each node has six degrees of freedom, which are {ux ,uy ,uy ,θx ,θy ,θz}.

4 BE formulation for the acoustic problem

First, the exterior acoustic problem as depicted in Fig. 2 (left) is investigated. After
this, a generalization for scattering problems is presented.
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Applying Green’s second theorem to a weighted residual form of eqn. (3) and
using the fundamental solution

P(x, y) = eiκ r

4πr
(9)

with r = |x − y| yields the representation formula

p(x) =
∫

Γi

P(x, y)
∂p(y)

∂ny

dsy −
∫

Γi

∂P (x, y)

∂ny

p(y) dsy, x ∈ Ωa (10)

which is valid for x within the acoustic domain. The boundary integral equation
is obtained by shifting x onto the smooth boundary. With the definition of the
acoustic flux q(x) := ∂p(x)

∂nx
one obtains

1

2
p(x) =

∫
Γi

P(x, y) q(y) dsy︸ ︷︷ ︸
=:(V q)(x)

−
∫

Γi

∂P (x, y)

∂ny

p(y) dsy︸ ︷︷ ︸
=:(Kp)(x)

, x ∈ Γi. (11)

The single layer potential is denoted by V and the double layer potential by K ,
respectively. Analogously, the hypersingular boundary integral equation is derived
by an additional derivative with respect to the normal nx

1

2
q(x) =

∫
Γi

∂P (x, y)

∂nx

q(y) dsy︸ ︷︷ ︸
=:(K ′q)(x)

− ∂

∂nx

∫
Γi

∂P (x, y)

∂ny

p(y) dsy︸ ︷︷ ︸
=:−(Dp)(x)

, x ∈ Γi

(12)
where K ′ denotes the adjoint double layer potential and D is the hypersingular
operator.

For exterior acoustic problems, neither the singular boundary integral equa-
tion (11) nor the hypersingular boundary integral equation (12) have a unique solu-
tion for all frequencies. One possibility to overcome the problem is the approach of
Burton and Miller [4], which uses a linear combination of both integral equations
(11) and (12)

(
1

2
I + K − αD

)
p(x) =

(
V − 1

2
αI + αK ′

)
q(x) (13)

where typically α = −i/κ is chosen for a good condition number.
To derive a boundary integral representation for the scattering problem, eqn. (13)

is applied to the scattered pressure ps in Ωa (see Fig. 2 left)

1

2
ps(x) + (Kps)(x) − α(Dps)(x) = (V qs)(x) − 1

2
αqs(x) + α(K ′qs)(x). (14)
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The same is done for pinc in the interior domain Ωi (see Fig. 1 right) in absence of
the structure

− 1

2
pinc(x) + (Kpinc)(x) − α(Dpinc)(x)

= (V q inc)(x) + 1

2
α q inc(x) + α(K ′q inc)(x). (15)

Please note, the integral-free terms need to be multiplied by minus one, since the
normal points into the fluid. Adding eqn. (14) to eqn. (15) and using eqn. (7) yields

1

2
p(x) + (Kp)(x) − α(Dp)(x) −

(
(V q)(x) − 1

2
αq(x) + α(K ′q)(x)

)

= pinc(x) − α q inc(x). (16)

The Galerkin method is used to obtain an algebraic system of equations. Hence,
eqn. (16) is tested with linear test functions ν on the interface ΓI. The pressures p

and pinc are interpolated with piecewise linear shape functions whereas constant
shape functions are used for the fluxes q and q inc. The resulting algebraic system
of equations reads

(
1

2
M + K − αD

)
︸ ︷︷ ︸

KBE

p −
(
V − 1

2
αM ′ + αK ′

)
︸ ︷︷ ︸

C
q
BE

q = Mpinc − αM ′q inc︸ ︷︷ ︸
bBE

, (17)

where pinc is the vector with the nodal incident pressures and q inc is the vector
with the incident flux on the elements due to the scattering source.

4.1 Implementation with the fast multipole method

Matrices KBE and C
q
BE in eqn. (17) are fully populated for standard boundary

element methods, which results in an expense of quadratic order. To overcome this
drawback, the fast multipole method is applied. For the introduced operators, one
typically has to evaluate potentials of the type


(xb) =
A∑

a=1

eiκ|xb−ya |

|xb − ya|qa, (18)

where qa denotes the source strengths of A sources. The multipole algorithm sets
up a clustering and sums up the contribution of all sources qa in the center za of a
cluster (see Fig. 3). At the next step, this so-called far-field signature is translated
to the center zb of the other clusters and from there finally distributed to xb.
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Figure 3: Clustering and splitting up of the vector between load point and field
point into three parts.

From a mathematical point of view, the separation of the distance |xb − ya| in
the fundamental solution succeeds by using the diagonal form of the multipole
expansion [5]

e iκ|xb−ya |

|xb − ya| = iκ

4 π

∞∑
l=0

(2l + 1)ilh(1)
l (κ |D|)

∫
S2

e iκ(da+db)·sPl(s · D̂) ds, (19)

with the Hankel functions hl and the Legendre polynomials Pl . The vectors which
are local to the clusters are denoted by da and db (see fig. 3), whereas D is defined
by the centers of two interacting clusters. The unit distance vector is defined by
D̂ = D/|D|. The integral over the unit sphere S

2 is approximated by Gauss point
quadrature using discrete values of the far-field directions s [5]. Since one can not
compute an infinite sum, the series has to be truncated. In this case the integration
over the unit sphere S

2 and the summation can be interchanged. Introducing the
translation operator

ML(s,D) =
L∑

�=0

(2� + 1)i�h(1)
� (κ |D|)P�(s · D̂), (20)

the original potential eqn. (18) can now be expressed in the form


(xb) ≈ iκ

4π

∫
S2

eiκ db·sML(s,D)

A∑
a=1

eiκ da ·sqa

︸ ︷︷ ︸
F(s)

ds. (21)

The choice of L in eqn. (20), which is called the expansion length, has a significant
influence on the accuracy and the performance of the multipole algorithm. Proper
choice helps to circumvent divergence of the series and will be discussed later in
this section. The sum on the right hand of (21) is called the far-field signature F(s).
It is local to the cluster with the sources qa , since only the vector da appears. In
contrast to this, the translation operator ML only depends on the vector D between
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two clusters’ centers. Thus, if a regular cluster grid is used, the translation oper-
ators can be reused. Translating the far-field signature to another cluster using a
translation operator forms the so called near-field signature. The solution is finally
recovered by an exponential function of db and an integration over the unit sphere.

Since the multipole expansion is only valid for well separated load and field
points, one has to split up the clusters into a near-field and far-field. All clusters
which fulfill the condition

|D| < cd
d

2
(22)

form the near-field. Here, d denotes the cluster diameter and cd is a constant. The
arising near-field is represented by a sparse matrix. It has to be evaluated by clas-
sical BEM. All other clusters are in the far-field and form the so called interaction
list.

To obtain an optimal efficiency, a hierarchical multilevel cluster tree is used. It
is set up by consecutive bisectioning such that a mother cluster is divided into two
son clusters on the next level. The procedure starts with the root cluster, which
is the smallest parallelepiped containing all elements of the model. The division
is stopped if a specified number of elements per cluster is reached. These final
clusters, which do not have any sons, are called leaf clusters. The interaction list of
every cluster is formed by those clusters, which are in the near-field of the mother
cluster but not in its own near-field.

Obviously, the far-field signature has to be translated to the interaction lists on
different levels. Since the cluster diameters are different on every level, the expan-
sion length L has to be adapted to every level, too. Typically the well-established
semi-empirical rule

L(κ d�) = κd� + ce log(κ d� + π) (23)

is used to estimate the number of series terms on level � of the cluster tree [6]. The
parameter ce has to be chosen by the user and determines the desired accuracy.
In order to maintain the accuracy of the multipole expansion when the cluster
diameter increases on the next level, an interpolation and filtering strategy has to
be applied. It is advantageous to use a fast Fourier transform for this purpose. This
is because new far-field directions have to be added, which is only possible for
the original form of the multipole expansion [7, 8]. The resulting fast multipole
method (FMM) has a quasi linear complexity of order O(N log2 N) as outlined
in [8].

The evaluation of the matrix-vector product is summarized with the following
steps:

1. Compute the near-field part by a sparse matrix-vector multiplication.
2. Evaluate the far-field signature F(s) for every leaf cluster.
3. Translate the far-field signature to all interaction clusters by means of the

translation operators (Eq. 20) and sum it up as the near-field signature N(s)

there.
4. Shift the far-field signature to the mother cluster and repeat step 3 until the

interaction list is empty.
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5. Go the opposite direction and shift the near-field signature N(s) to the son
clusters until the leaf clusters are reached.

6. Recover the solution by integration over the unit sphere.

5 Coupled problem

For the coupling of the FE formulation with the BE formulation, matching grids are
considered. The first transmission condition eqn. (5) links the acoustic pressure p

with the tractions tf of the structure and reads in matrix notation

f f = −CFE p, (24)

where CFE is assembled of the element matrices

Ck
FE = −

∫
τk

NT
u nk Np dsx. (25)

Here, the matrices with the shape functions of the structure and the fluid are
denoted by Nu and Np, respectively. A lumped force loading is applied, which
neglects moments.

Due to the second transmission condition eqn. (6), the acoustic flux q on each
boundary element τm is computed from the structural displacements of the adjacent
nodes k by

q = T qu. (26)

where each row corresponds to

qm = 1

3
�fω

2
∑
k∈m

uk · nm, (27)

with the fluid density �f. Using the FE system eqn. (8), the definition of CFE by
eqn. (24) and the BE representation eqn. (17) yields the coupled system of equa-
tions for the scattering problem(

KFE CFE

C
q
BET q KBE

)
︸ ︷︷ ︸

Kq

(
u

p

)
=
(

0

bBE

)
. (28)

Equation (28) is rewritten using the Schur complement as

(KBE − C
q
BET qK−1

FE CFE) p = bBE. (29)

The structural displacements are then computed in a postprocessing step. It is
worth mentioning, that the excitation of the structure results from the incident field
which only indirectly acts on the structure through the acoustic fluid. The coupled
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system (29) is solved using a preconditioned GMRES [9]. The matrix-vector prod-
ucts with KBE and CBE are efficiently evaluated using the fast multipole method.
Please note, that only the computation of the far-field signatures is different for
the two matrices, but all other multipole steps are done simultaneously. In every
iteration step, the effect of K−1

FE on a vector has to be evaluated. In this work, a
LDLT factorization is applied for this purpose. This way, the factorization has to
be computed only once and is then reused in every iteration step. To accelerate the
convergence of the GMRES solver, the one-way coupled system is applied, where
CFE is set to zero. In this work, an ILU factorization of the near-field of KBE is
applied for preconditioning.

6 Numerical example

As test example a spherical shell structure which is hit by an incident plane wave
is considered. For this type of problem an analytical solution is available [10].
The elastic structure is modeled with the commercial FE package ANSYS using
SHELL63 elements (12 � and 3986 �) with six degrees of freedom at each node.
The mean element size is 0.28 m and the model consists of 3994 nodes. The
sphere has a radius r=5.00 m and a shell thickness t=0.05 m. Steel is assumed as
linear elastic material (Young’s modulus E=207 GPa, Poisson’s ratio ν=0.3, den-
sity �s=7669 kg/m3). The material data of water (density �f=1000 kg/m3, speed of
sound c=1387 m/s) are applied for the simulation of the exterior acoustic fluid. In
the following, the point on the sphere which is first hit by the incident plane wave
is denoted by A, whereas B is located directly on the opposite side.

First, the pressure and displacement amplitudes at node A are investigated within
the frequency range f ∈ [5 Hz, 100 Hz]. Figure 4 compares the numerical results
of the FMBE–FE approach with the analytical ones for both an elastic sphere and
a rigid sphere. In case of a rigid sphere, CFE in eqn. (29) is simply set to zero.
Obviously, the agreement between the numerical and the analytical results is quite
good. Additionally, one can clearly see that the elasticity of the sphere has a strong
influence on the pressure results, justifying the use of a fully coupled solution
scheme. Only at very low frequencies f < 10 Hz, the solutions for the elastic
sphere and rigid sphere tend to the same value. In this range, there are hardly any
deformations and only rigid body motions occur.

In a second scenario, the directivity pattern along a semicircle between A and
B on the surface of the sphere is investigated. An angle β = 0 corresponds to
point B whereas β = 180◦ characterizes point A. Again, the numerical results
are compared to the analytical ones for both the elastic and the rigid case. The
simulations are performed at 75 Hz. The results are visualized in Fig. 5. In case of
β = 0◦, the ratio ps/pinc is the highest for both the elastic and rigid case. The elastic
sphere additionally has two sidelobes which can not be observed in the rigid case.
Generally, the values are higher in the elastic case than in the rigid case. Once
again, the results of the FE-BE approach are almost identical with the analytical
solution.
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Figure 4: Sphere: pressure and displacement amplitudes at point A for a frequency
sweep between 5 and 100 Hz.
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Figure 5: Directivity pattern of the spherical shell structure for f =75 Hz. The
dimensionless pressure ps/pinc is plotted for all points on a semicircle
between points A and B.

6.1 Efficiency

Concerning the simulation time, most of the time is spent with setting up the BE
near-field matrices and with solving the obtained linear system. Proper precon-
ditioning of the GMRES has a strong influence on the convergence rate. In this
paper, a ILU preconditioner on KBE is applied to accelerate the GMRES. The
required number of iterations steps for a tolerance of 10−6 is visualized in Fig. 6
(left). It is observable, that the number of iteration steps is lower in case of the rigid
sphere, where it is almost independent of the frequency. This is not astonishing,
since the structural part of the Schur complement is neglected for preconditioning.
With increasing frequency, the influence of the elasticity of the structure increases.
For a lower number of iterations, the second part of the Schur complement would
need to be considered as well.
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Figure 6: Sphere: number of GMRES iteration steps with ILU preconditioning
(left) and memory consumption for the submatrices (right).

The memory consumption of all matrices is summarized in the table on the right
hand side of fig. 6. The sparse BE near–field matrices are more expensive than the
sparsely populated FE system matrix. The memory consumption of CFE and T uq

is negligible. The significant part of the memory consumption is the LDLT factor-
ization of the dynamic stiffness matrix KFE, which is symmetric and real valued in
absence of structural damping. Theoretically, one could apply an iterative solver
for K−1

FE to avoid the factorization. But as a consequence the efficiency would
decrease because of the resulting nested solution scheme. Additionally, proper pre-
conditioning of KFE which typically results from shell elements is a non-trivial
task.

7 Conclusion

In this paper scattering problems with fluid-structure interaction are investigated.
For this purpose, a conforming coupling formulation between the boundary ele-
ment method and finite element method is presented. For the finite element part,
an interface to a commercial code is set up. The boundary element part is acceler-
ated by the fast multipole method. Thus, even large scale problems can efficiently
be computed. Numerical results for a spherical shell structure with an incident
plane wave are compared with an analytical solution and show a good accuracy
of the applied FE-BE approach. Additionally, the influence of the elasticity of the
structure turned out to have a strong effect on the overall results. This necessitates
the use of a strong coupling scheme. The overall computation time is influenced
by proper preconditioning which should be further improved for an optimal per-
formance.
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