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Abstract 

The current calculation power of computers permits the aeroelastic analysis of 
long-span bridges using time domain methods. These methods solve the 
differential equations set for the dynamic analysis by means of step by step 
integration, taking into account the fluid structure interaction of the wind 
aeroelastic phenomena.  Working with time domain methods has advantages 
over more standard frequency domain methods. It is possible to more accurately 
study non-stationary periods associated with the initiation of the aeroelastic 
instabilities, and nonlinearities can also be analyzed more easily. The main 
difficulty with time domain methods is the modelling of wind forces, usually 
defined as frequency functions. The above-mentioned drawback is solved by 
using the so-called indicial functions that depend on time and they must be 
obtained from the classical flutter derivatives, which are functions of the 
frequency. A recent method, named band superposition, has been developed. The 
new concept is the decomposition of the wind forces in different frequency 
ranges, analyzing the forces of the lowest frequency band as quasi-steady, and 
the higher frequency bands with their classical expressions in terms of 
frequency. To analyze the low-frequency wind loads as quasi-steady is 
appropriate because the wind flow fits to the deck geometry for that case. The 
total response consists of the sum of the responses for each frequency band. This 
paper explains and compares all these methods and shows examples. 
Keywords: aeroelasticity, long-span bridges, time domain analysis, flutter, 
buffeting. 
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1 Flutter derivatives and indicial functions 

Flutter phenomenon in cable supported bridges is mathematically modelled in a 
similar way as flutter of an aerodynamic profile in aeronautics. However, the 
geometry of the cross section deck is not usually aerodynamic. Therefore, the 
functions that relate to the degrees of freedom considered and the aeroelastic 
forces on the deck do not have analytical expressions. The most widely used 
solution for this difficulty is the Simiu and Scanlan [1] method, which defines 
functions called flutter derivatives that depend on the vibration frequency and the 
mean wind speed. These functions are obtained experimentally, working with a 
sectional model of the deck in wind tunnels. According to the sign criteria shown 
in Figure 1, the expression of aeroelastic drag, lift and moment fa = {Da, La, 
Ma}

T, self-excited by the deck movements u = {h, p, }T can be written in matrix 
form as 

a a a f C u K u ,                                               (1) 

where 
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where B is the deck width,  is the air density, l is the dimension along the deck, 
V is the mean wind speed, K = B/V is the reduced frequency with  the 
frequency of the response and H*

i, P*
i, A*

i i = 1...6  are the flutter derivatives.   
 

 

Figure 1: Sign criteria for the degree of freedom and the aeroelastic forces 
on the deck according to Scanlan formulation. 

     Because the flutter derivatives depend on K, it is usual to work in the 
frequency domain (Jurado et al. [2]). However, to work in the time domain it is 
necessary to express the aeroelastic forces as time functions, which is possible 
using the Wagner theory [3]. This aeronautic theory studies the displacements of 
a wing profile when a sudden change of the attack angle 0 takes place with 
respect to the position of no lift. The variation of lift with respect to the non-
dimensional time (s = 2Vt/B) is written by an indicial function L,(s) in the way 

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 105, © 2009 WIT Press

108  Fluid Structure Interaction V



0

21 ˆ( ) ( )
2

L LL s V BC s    ,                                      (3) 

where ˆ
LC  is the derivative of the aerodynamic coefficient respect to the angle . 

The expression (3) can be generalized for any rotation by the Duhamel integral 
so 
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where
L
 is the derivative respect to s of

L .  In a similar way the expressions 

of the time variation of the lift caused by the vertical h and lateral p  velocities of 

the system can be obtained. Therefore the total lift is  
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and it depends on three indicial functions, one for each degree of freedom. The 
others aeroelastic forces drag, Da and moment Ma have similar expressions: 
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Indicial functions are not known and must be approximated by exponential 
functions fitting indices looking for the same force values that flutter derivatives 
produce. Another possibility is to use the Fourier transform of the indicial 

function expressed in frequency domain  k , which has a direct relation with 

the flutter derivatives, as León et al. shows [4]. 
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2 Buffeting forces 

The dynamic equilibrium equation for the bridge deck includes the aeroelastic 
forces fa, analyzed in the previous paragraph, and the buffeting forces fb caused 
by the turbulent nature of the wind. 

a b  Mu Cu Ku f f  ,                                           (8) 

where M, C and K are the mass, stiffness and damping matrices of the structure. 
The buffeting forces can also be written in a matrix form multiplying the matrix 
Pb by the wind fluctuations vector wb, in the wind direction vv and vertical wv. 
The matrix Pb contains the aerodynamic coefficients of drag CD, lift CL, and 
moment CM, its derivatives with respect to the angle of attack C’D, C’L and C’M 
and the admittance functions Duv,Luv,Muv,Dwv,Lwv,Mwv which take into 
account the dependency of the aerodynamic coefficient of the frequency. 
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The buffeting phenomenon is usually analyzed in the frequency domain with 
spectral analysis. In fact, the wind turbulence is defined by the spectrum of the 
wind speed fluctuations. Before a time domain analysis, it is necessary to 
generate a time history of the wind speed from the known fluctuation spectrums. 
The Shinozuka and Deodatis method [5] is based on a sinus expansion and an 
inverse Fourier transform can be used for that purpose. For example, the time 
history of figure 2 is generated for a mean wind speed of V = 4 m/s and a vertical 
fluctuation spectrum Sw given by 
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which depends on turbulence scales L, turbulence intensities I and the terrain 
roughness z0. 
 

 

Figure 2: Time history of the vertical wind fluctuation. 
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3 Quasi-steady approach (QS) 

The quasi-steady theory is based on the hypothesis that wind forces are 
stationary. An apparent wind speed considering the deck movement is defined, 
so the expressions of wind forces are the usual static functions with the 
aerodynamic coefficients. This hypothesis is valid when the vibration frequency 
of the deck is low under high wind speed, so the deck movement does not affect 
the flow around itself. If the turbulent forces are taken into account, the theory is 
only right when eddies have low frequency and great scale. Small eddies with 
high frequency affect only a part of the deck and therefore this theory is not 
applicable.  
     The aerodynamic coefficients depend on the angle of attack between the deck 
and the instantaneous flow. This angle is usually call dynamic attack angle d. 
Figure 3 shows this angle defined as the sum of static deck rotation θst, the angle 
caused by the instantaneous rotational vibration θ and the angle ψ which takes 
into account the relative velocity Vr  between the turbulent flow with fluctuations 
vv and wv, and the deck velocities  , ,y z u    . The wind forces expressions are 

then 

     2 2 21 1 1
2 2 2

; ;y ry D d y rz L d r M dF V BC F V BC F V BC          ,        (11) 

where 

   222

1,ri v v iV V v y w B z       .                                 (12) 

B1,i is a correction coefficient for the deck width used to consider the distance 
between the rotation centre and the geometrical centre of the deck. Rocchi [6] 
gives an expression to obtain this using the flutter derivatives (Polytechnic of 
Milan criteria) 

* * *

2 2 2
1, 1, 1,* * *

1 1 1

; ;y z

p h a
B B B B B B

p h a
   .                                  (13)  

 
Figure 3: Dynamic angle of attack. 

     As shown in figure 3, the forces have the apparent wind directions and a 
projection on the global axis is necessary to calculate the quasi-steady forces 
vector fs. After that, the modal analysis is used to reduce the dimension problem 
and, finally, a step by step direct integration permits the resolution of the 
displacement equations: for example using the Wilson- method that is very well 
described in many texts as Clough and Penzien [7]. 
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The quasi-steady approach has advantages to permit a non-linear analysis 
considering the variation of the angle of attack caused by the torsional rotation of 
the deck. The instantaneous bridge deformation changes the angle of attack in 
respect to a previous time affecting the wind forces definition. This non-linearity 
cannot be analysed by the methods that use flutter derivatives or indicial 
functions because they fix the angle of attack around which the vibrations take 
place. Besides, they consider small displacements. 
 

 

Figure 4: Band divisions depending on the flutter derivative value h*
3 (Milan 

criteria). 

4 Band superposition method (BS) 

The band superposition method has been recently developed by Diana et al. [8] 
and Rocchi [6], professors of the Polytechnic of Milan.  The new method 
combines the easy definition of wind forces as frequency functions, such as the 
flutter derivatives, and the possibility of a non-linear analysis, which is a 
characteristic of the quasi-steady approach. Several sets of wind forces 
depending on the frequency must be established. The total range of frequencies 
is divided by bands. For the low frequencies, band B0, the quasi-steady approach 
is used and the structural response is obtained in time domain, as explained in the 
previous section. Then, using the resulted dynamic angle of attack of the band 
B0, the flutter derivatives and the aerodynamic coefficients are evaluated for the 
upper bands, using frequency functions for the wind forces. The total 
displacements solution is the sum of all the bands responses. There are several 
possibilities to choose the frequency of each upper band: the mean frequency of 
the band (BSWbandQ), or the damping frequency of each aeroelastic mode 
(BSWdaQ). 
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     The number of bands and their frequency limits are determined by the values 
of the flutter derivatives, considering the Milan criteria (figure 4). According to 
this criteria some flutter derivatives have an asymptote for high values of the 
reduced velocity V*=2V/B, which corresponds to low frequencies (band B0). 
For many deck section shapes, the lower limit of reduced velocity is V*

B0 = 20. 
To determine the rest of the band limits, the maximum variation of the flutter 
derivative values is fixed. The cut frequency for one band is Bl = 2V/(BV*

Bl). 
In each band the frequency functions are evaluated with the mean value of the 
upper and lower frequency limits  1

/ 2
Bj Bj Bj

  


  . A time history of wind 

fluctuations wb(t) is evaluated by the Shinozuka-Deodatis method, yet using only 
the frequencies of the band. After that, the buffeting forces vector is calculated 
by expression (9). The method analyzes the band B0 by the quasi-steady 
approach expressed in (14), and each upper band j by step by step direct 
integration after a modal decomposition, solving 

,, ;    
Bj Bj Bj b Bj Bj Bja Bj     f u ΦqMu Cu Ku f  .                     (15) 

The BSWbandQ method needs to build different aeroelastic matrices in each 
band and takes the band mean frequency, which it is expressed by 
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However, the BSWdaQ method uses the same aeroelastic matrices for all the 
bands and builds them with the damping frequency d,j of each aeroelastic mode. 
In this case the equations system is 
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The total displacements in a time t are approximated by the sum of the band 
responses for that time 

           
0 0 0
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5 Inverse Fourier transform of the frequency response 
(IFTR) 

A time history of the deck displacements can be easily obtained by an inverse 
Fourier transform (IFRT) of the frequency domain response. This approach is an 
option to check the previous methods, although it also assumes the hypothesis of 
small displacement amplitudes around the initial position. Starting from the wind 
velocity fluctuations vector expressed in time domain wb (t) = [vv(t), wv(t)]

T, the 
Fourier transform changes it to frequency domain  

b
w . After that, the 

buffeting forces are calculated by    b b b  P wf  . Using modal analysis the 

participation modal vector can be written in the following form, 

     
0

;   ;   ;    i t i tt e t e dt 




  u = Φq q q q q u = Φq  ,                (19) 

the equations system (8) becomes 
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where V() is the impedance matrix and its inverse is the transfer matrix H(). 
The IFRT of u () finally gives u(t). The solution is a periodic function, so it is a 
stationary response. Therefore IFRT does not permit one to analyse a non-
stationary instability as flutter, because in this phenomena the displacements 
amplitudes increase and are not periodic. 

6 Examples 

The first example consists of a flat plate section of B = 1.2 m width with only 
one degree of freedom of torsional rotation. The following properties are taken 
into account per unit length: torsional inertia I = 1 kgm2, damping c = 0.2 
kg·s/m2, stiffness k = 25.266 kg·s2/m2, the natural frequency is  = (k/I)1/2 = 
5.026 rad/s and the damping ratio is  =c/2I = 0.02. If a wind speed V = 4 m/s 
is considered and taking the fluctuations shown in figure 2, the following wind 
forces are evaluated: 
 Aeroelastic moment from expression (1) and (2) using the flutter derivatives 

of a flat plate (Simiu and Scanlan [1]) and taking the natural frequency n, 
the aeroelastic damping frequency da, or the bands frequencies band. 

 Buffeting moment from the expression (9) Mb  = ½V2B2C’M(wv/V). 
The displacements equation of the system 

a b
MI c k M        has been 

solved by the following methods: 
_____  IFTR: Inverse Fourier transform of the frequency response. 
······ Wilson  with indicial functions related with flutter derivatives A*

2 y A*
3.  

----- BSWn: Band superposition method without QS for band B0 and using the 
natural frequency to calculate A*

2 y A*
3. 

······ BSWda: Band superposition method without QS for band B0 and using 
the aeroelastic damping frequency to calculate A*

2 y A*
3. 

 ----- BSWband: Band superposition method without QS for band B0 and using 
the band frequencies to calculate A*

2 y A*
3. 

Figure 5 shows the time histories of the flat plate rotation in each case. The 
Wilson solution with indicial functions perfectly fits to IFRT because both 
methods suppose small displacements and the indicial functions are evaluated 
from the flutter derivatives. The BSWband solution fits to IFRT during the 
stationary part but not at the beginning. This happens because the flutter 
derivatives are calculated with the band frequencies and not using the response 
frequency. BSWn and BSWda solutions present the worst results. 
     The main aim of this paper is to obtain the wind response of a long-span 
bridge in the time domain, so the Akashi Bridge in Japan, record of span length 
(1991 m), has been taken as an example. Its structural and aerodynamic 
properties and the wind characteristics, profile and fluctuation spectrums can be 
found in Katsuchi [10]. The time history of wind velocity has been calculated  
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Figure 5: Time histories of the flat plate rotation. 

 

Figure 6: Lateral v, vertical w and rotational  displacements time histories 
of the central point. 

during 13 minutes using the Shinozuka-Deodatis method from the fluctuation 
spectrums. A mean wind speed of 60 m/s is considered. The deck displacements 
response is shown in figure 6 using the following approaches: 
___ IFRT: Inverse Fourier transform of the frequency response. 
___  

BSWband: Band superposition method without QS for band B0 and using 
the band frequencies.  

___  
BSWda: Band superposition method without QS for band B0 and using the 
aeroelastic damping frequencies. 

___  BSWbandQ: Band superposition method using QS for band B0 and the band 
frequencies. 

__ 
BSWdaQ: Band superposition method using QS for band B0 and the 
aeroelastic damping frequencies. 

     To study the displacement graphs of figure 6 with all the curves together is 
difficult, so the root mean square of the degrees of freedom along the bridge 
spans has been calculated from the time histories. The three first methods more 
or less show the same results, which are also similar to Katsuchi’s [10] solution.  
The two methods that use the quasi-steady approach to band B0 give 
substantially different results, mainly for the lateral displacement which is 40% 
smaller. It is curious that testing in the wind tunnel of the Akashi bridge full 
model also gave smaller lateral vibrations, this confirms that methods based on 
band superposition using quasi-steady solution for band B0 are the best. 
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Figure 7: Lateral v, vertical w and rotational  root mean square 
displacements along the spans. 

7 Conclusions 

 The current calculation power of computers permits the aeroelastic analysis 
of long-span bridges in the time domain. 

 Working in the time domain permits one to more accurately study  
non-stationary periods associated with the initiation of the aeroelastic 
instabilities, and also nonlinearities can be analyzed more easily. 

 The quasi-steady approach has advantages to permit a non-linear analysis 
considering the variation of the angle of attack caused by the torsional 
rotation of the deck. 

 A time history of the deck displacements can be obtained by an inverse 
Fourier transform (IFRT) of the frequency domain response. This approach is 
an option to check the previous methods, although it also assumes the 
hypothesis of small displacement amplitudes around the initial position. 

 The Wilson solution with indicial functions perfectly fits to IFRT because 
both methods suppose small displacements and the indicial functions are 
evaluated from the flutter derivatives. 

 Band superposition consists of a decomposition of the wind forces in 
different frequency ranges, analyzing the forces of the lowest frequency band 
as quasi-steady, and the higher frequency bands with their classical 
expressions in terms of frequency.  

 The methods that use band superposition and the quasi-steady approach to 
band B0 give better results, according to the testing of the Akashi Bridge full 
model in a wind tunnel.  
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