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Abstract

This paper deals with a computational method based on multiphase modeling to
predict the interactions between free-surface flows and linear elastic objects that
undergo finite deformations. In multiphase modeling, a field consisting of gas, liq-
uid and solid phases is treated as the immiscible and incompressible fluid-mixture
with different physical properties and the governing equations are derived with
one-fluid modeling, while the solid model is derived with objective stress rates
and discretization in FEM to deal with the finite deformations. Applying the pro-
posed computational method to experimental results, it was shown that the time
histories of the displacements of an elastic plate and the fluid forces caused by
wave-induced flows are successfully predicted and that the differences of the fluid
forces acting on elastic and rigid plates are reasonably predicted.
Keywords: fluid-solid interaction, free-surface flow, elastic body, finite deforma-
tion, multiphase model.

1 Introduction

The accurate evaluation of the interactions between free-surface flows and the
deformations of elastic objects is an important engineering subject, as found in
the dynamic responses of floating elastic structures against wave motions and the
fluid resistance forces of the flexible plants in river flows. While many investiga-
tions have been made for one and two-degree of freedom problems such as the
oscillations of a cylinder in uniform flows, the numerical studies for multi-degree
of freedom are relatively few, in particular for the interactions between free surface
flows and finite deformations of objects.
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In the present study, a flexible object is represented by multiple tetrahedron
elements and the finite deformations are calculated with stress rates and a finite
element method (FEM). This solid model is implemented in a multiphase model
to take account of the fluid-solid interaction. In the multiphase model, the free-
surface flow including solid objects, which consists of gas, liquid and solid phases,
is treated as a multiphase field and it is modeled as a mixture of the immiscible
and incompressible different fluids. The fluid-solid interactions are dealt with the
fluid forces, which are calculated from the momentum equation of the multiphase
model, and mass-averaged velocities evaluated with the object displacement veloc-
ities.

The computational method was applied to the experiments, in which the finite
deformations of an elastic plate and the fluid forces were measured in a water tank
equipped with a wave generator. As a result, it was shown that the time histories of
the plate displacements and fluid forces are successfully predicted with the present
method. In addition, it was demonstrated that the differences of the fluid forces
acting on elastic and rigid plates are reasonably predicted.

2 Numerical procedures

2.1 Multiphase modeling

It is necessary to evaluate fluid forces acting on solid objects accurately in the
prediction of fluid-solid interactions. The fluid forces are usually obtained through
the surface integral of the fluid pressure and viscous stresses around the object
with boundary-fitted coordinates or unstructured elements. However, this approach
becomes difficult when the object shapes are largely complicated and they collide
with each other.

In order to propose more robust computational methods, multiphase model-
ing [1], [2] is employed in this study; a field consisting of gas, liquid and solid
phases is assumed to be immiscible and incompressible fluid-mixture with the
physical properties corresponding to their phases. The fluid forces acting on the
solid objects are evaluated with the volume integral of the pressure and viscous
terms in the momentum equations for multiphase flows. The governing equations
are the mass conservation equation in Eulerian description, incompressible condi-
tion and momentum equation in conservation form:
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where t is time, xi is the component of three-dimensional orthogonal coordinates
and fi is the acceleration component of the external forces. While the velocity
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component ui is the mass-averaged value in the mixture of fluids, the density ρ,
pressure p and viscous coefficient µ are defined as the volume-averaged values.
The basic equations are discretized in a collocated grid system [3] on the basis
of a finite volume method. The numerical procedures to solve the basic equations
are based on a MAC method [4], in which some improved numerical techniques
are implemented, such as an implicit solver (C-ISMAC method) [5] and a pres-
sure computation method (C-HSMAC method) [6] effective to the incompressible
fluids [7].

2.2 Solid model

The movement of a deformable body � is described with the principle of virtual
work as follows:∫

�

v∗T ρv̈ d� +
∫

�

v∗T cv̇ d� +
∫

�

ε∗T σ d� =
∫

�

v∗T f ed� (4)

where ρ, c, v, σ and f e are density, damping coefficient, displacement, stress and
external force vectors, respectively. The virtual displacement and strain vectors
are defined as v∗ and ε∗. The dots on the variables indicate the time derivatives.
The solid object is represented with the second-order tetrahedron elements used in
FEM, in which each element has ten nodes. The shape function Ni (i = 1, · · · , 10)

in the element is given by a quadratic function of the natural coordinates in the
corresponding isoparametric element. When v and v∗ are discretized with Ni , (4)
can be rewritten with the variables defined on the nodes.

M d̈ + Cḋ + F int = f (5)

where d and f are the node displacement vector and the external force vector
acting on the nodes, while M and C are mass and damping matrices, which are
given by diagonal forms.

A solid object treated in this study is assumed to be a linear elastic body. Thus,
the stress strain behavior of the material is given by a linear constitutive relation,
while the finite deformation, which is related to the geometric nonlinearity [8],
is taken into account. In order to deal with the large deformation, the following
objective stress rate, Cotter-Rivlin stress rate tensor Ṫc, is utilized [9]:

Ṫc = Ṫ + LT T + T L (6)

where T and L are Cauchy stress and velocity gradient tensors, respectively. The
Ṫc is evaluated with the following time derivative of the linear constitutive relation:

{Ṫc}v = Dε̇ = DBḋ (7)

where { }v means the vector form of the tensor, ε is the strain vector on nodes, and
D and B are stress-strain and strain-displacement matrices. The stress tensor at n+
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1 time step given by T n+1 is approximated with the Euler explicit discretization:

{T n+1}v = {T n}v + {Ṫ }v�t (8)

where Ṫ is obtained from eqn. (6). Then, F n+1
int in eqn. (5) is calculated with the

following volume integral:

F n+1
int =

∫
�

BT {T n+1}vd� (9)

Finally, the acceleration vector d̈ is calculated from eqn. (5) with the following
equation:

d̈ = M−1[f − Cḋ − F int

]
(10)

The displacement vector d can be obtained by the numerical time integration of
eqn. (10).

2.3 Interaction between fluids and solid objects

The fluid forces acting on the object are determined from the pressure and viscous
terms of eqn. (3). In the solid model described above, the fluid forces at the nodes
need to be calculated. Thus, the fluid force is firstly estimated for a part of the
tetrahedron element included in a fluid-cell, as illustrated in Fig. 1 and then it is
distributed to the nodes. It is noted that Fig. 1 is schematically shown with a first-
order element that has four nodes.

In Fig. 1, FCkm indicates the fluid force vector acting on a part of the element
Tkm of the object−k included in fluid-cell C. The xi component of FCkm, which is
given by F i

Ckm, is calculated with a portion of the element volume �TCkm included
in the fluid-cell C and the density ρbk of the object−k as

F i
Ckm = ρbk�TCkm
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where �TCkm is estimated with the sub-cell method [7]. The fluid force vector
FCkm calculated from eqn. (11) is distributed to the element nodes.

On the other hand, the response of the dynamic behaviors of the object is taken
into account in the multiphase field, as schematically shown in Fig. 2.

The velocity vector vkm of the tetrahedron element is determined as the average
value of those defined at the nodes ḋ , which is equivalent to the node velocity
vector vkmj in Fig. 2. The contribution of the element of Tkm to the fluid-cell C

is then determined with vkm, density and volume �TCkm. Finally, the velocity
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Figure 1: Estimation of the fluid force acting on an object.
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Figure 2: Transformation from object motion to velocity in multiphase field.

vector u in the multiphase field, which is defined at the center of the fluid-cell, is
determined as the following mass-averaged value:

u = 1

mC

(
mf uf +

∑
k

∑
m

ρbk�TCkmvkm

)
(12)
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Figure 3: Water tank used in experiments (side and plane views).

where mC and mf are total mass in the fluid-cell and the mass of gas and liquid
phases, respectively. The velocity vector of the mixture of gas and liquid phases is
given by uf .

3 Application to experimental results

3.1 Experiments

As shown in Fig. 3, the deformations of an elastic plate were measured in a water
tank equipped with a wave generator. The wave-induced flow is generated on a
box in the water tank shown in Fig. 3, which causes the deformation of the plate.
The top of the elastic plate is fixed on a steel plate, on which four strain gages
are attached to measure the fluid forces acting on the elastic plate. The lengths of
the tank L1, L2 and B shown in Fig. 3 are 0.7 m, 0.7 m and 0.19‘m, while the
initial water depth h0 and the height of the box hb are 0.15 m and 0.1 m. The
bottom surface of the elastic plate is placed 15mm above the top of the box. The
elastic plate, 10 × 30 × 90 mm, is made of a soft rubber and its density is about
0.255. The linearity of the constitutive relation was experimentally confirmed and
its Young’s modulus and dumping coefficient per volume are 3.5 × 105 Pa and
2.0 × 103 N s/m/m3.

In the experiments, two cases of waves were generated; the maximum water
depths hm in front of the box are 185 mm in case-A and 195 mm in case-B. In
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(a) case-A

(b) case-B

Figure 4: Displacements of bottom end of elastic plate.

both cases, the deformations of the elastic plate were recorded by a video camera
and the displacements were evaluated with the image analysis. In addition, the
fluid forces were measured by the strain gages and the natural oscillations of the
plate were removed from the output signals by applying a moving-average filter.
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(a) case-A

(b) case-B

Figure 5: Fluid forces acting on elastic plate.

3.2 Computational results and discussion

The computational method was applied to the experimental results to confirm its
validity. In the computations, a fluid-cell is a 10 × 10 × 10 mm cube and 140 ×
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(a) side view

(b) top view

Figure 6: Predicted pressure distributions around deformed plate (case-B).

19×25 cells were set for the regions inside of the tank, including water, air and the
elastic plate. The kinematic viscosities of water and air are set at 1.0 × 10−6 and
1.0 × 10−5 m2/s, while their densities are 1.0 × 103 and 1.0 kg/m3 respectively.
The elastic plate is represented by 164 tetrahedron elements with 441 nodes. The
experimentally obtained Young’s modulus and damping coefficient are used in the
computation.

Figure 4 shows the time histories of the displacements dt at the bottom of the
elastic plate. The displacements of case-B are larger than those of case-A due to
the difference of the wave heights. Since the predicted results generally agree with
the experimentally-observed displacements in both cases, it can be thought that the
present solid model for finite deformation is effective.

The comparisons between experiments and predictions regarding the fluid forces
Fw acting on the plate are shown in Fig. 5. While the calculated fluid forces are
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Figure 7: Fluid forces acting on elastic and rigid plates.

slightly smaller than those obtained in experiments, the shapes of the distributions
are reasonably predicted. The pressure distributions around the deformed plate
are shown in Fig. 6. It can be seen that the high pressure regions exist on the
upstream (−x direction) side of the wave-induced flow, while on the downstream
side low pressure zone arises due to the wake vortex flows. It can be concluded
that the adequate evaluation of the surrounding pressure field enables us to obtain
the reasonably-predicted results as shown in Fig. 4 and Fig. 5.

Finally, Fig. 7 shows the peak values of the fluid forces Fwm acting on elastic
and rigid plates, which have the same geometries. While both of the fluid forces
increase with increasing wave height wb (= hm−h0), the forces against the elastic
plate are smaller than those acting on the rigid one. This is due to the fact that a
part of the fluid forces are consumed in the work to deform the object in case that
the plate is elastic. Including these tendencies, the experimentally-observed Fwm

are adequately predicted with the present computational method.

4 Conclusions

On the basis of the multiphase modeling, the computational method has been pro-
posed to predict the interactions between free-surface flows and the linear elastic
objects which undergo finite deformations. In the multiphase modeling, the gas,
liquid and solid phases are treated as immiscible and incompressible fluids with
different physical properties and the governing equations are derived with the one-
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fluid modeling. The solid model, on the other hand, is derived with objective stress
rates to deal with the finite deformations.

The proposed computational method was applied to the experimental results;
deformations of an elastic plate due to the wave-induced flows and the fluid forces
acting on it. As a result, it was shown that the time histories of the plate dis-
placements and fluid forces are successfully predicted with the present method. In
addition, the maximum values of the fluid forces Fwm acting on the elastic and
rigid plates were compared and it was demonstrated that the relationships between
wave heights and Fwm are reasonably predicted.
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