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Abstract 

A hybrid meshfree-Cartesian grid method is proposed for simulating three 
dimensional fluid-solid interaction (FSI) problems involving rigid bodies with 
large boundary motions. The rigid body is embedded and enveloped by a cloud 
of mesh-free nodes, which convect with the motion of the body against a 
background of Cartesian nodes. Spatial discretization is accomplished by the 
combination of a Generalized Finite Difference (GFD) method and conventional 
finite difference (FD) method applied to the meshfree and Cartesian nodes 
respectively. Error minimization in GFD is carried out by singular value 
decomposition (SVD). A time-implicit iterative procedure is employed to 
compute the new/evolving position of the immersed bodies together with the 
dynamically coupled solutions of the flow field and bodies. The present method 
is applied to simulate the FSI problems of freely falling bodies in quiescent flow 
and freely rotating bodies in shear flow. The good agreement with published 
results validates the ability of the present hybrid meshfree-Cartesian grid scheme 
for solving FSI problems in 3D.  
Keywords: fluid-solid interaction, generalized finite difference method, singular 
value decomposition, projection method.  

1 Introduction 

Many flows of practical interest in engineering and bioengineering involve fluid-
solid interaction (FSI). Typical examples include the vibration of bridges and 
buildings to winds, the flutter of aircraft wings, the flow of blood through 
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arteries, and the swimming and flying of animals or insects. The challenge 
remains for the numerical simulation of this class of flow problems because the 
position, and in certain situations the shape, of the interface is not known a priori 
and has to be determined by dynamically coupling the motion of the body and 
the flow of the surrounding fluid.  
     From the point of view of methods for moving boundary treatment, the 
numerical methods for the FSI problems in literature may be divided into two 
categories: the arbitrary Lagrangian-Eulerian (ALE) or moving grid approach 
and the fixed or Cartesian grid approach. In the ALE approach, the governing 
equations for the fluid flow are adapted and solved on a grid which 
deforms/moves with the interface of the body [1]. An ALE approach associated 
with finite element method (FEM) has been developed by Hu and his co-workers 
[2, 3] and recently been improved by Choi [4] and Hu et al. [5]. The method has 
been applied to simulate the motion of a large number of particles in fluids [3-5]. 
An ALE formulation based on finite volume method (FVM) has been proposed 
by Papadakis [6]. The method has been used to investigate the wave propagation 
in a flexible tube and good agreement has been found between his results and the 
existing analytic solutions or numerical results. Although the ALE based 
approaches are the most widely used techniques so far, the limitation of 
constantly regenerating the mesh to accommodate the changing solution domain, 
which inevitably results in increased costs in mesh administration and data 
interpolation, and a possible increase in numerical errors, hampers its 
development. 
     The immersed boundary method (IBM) [7] is one of the most prominent and 
earliest techniques based on the fixed grid approach. It has the simplicity of grid 
system and corresponding efficiency in computation. The main drawback of the 
IBM is that the piecewise continuous solution across the immersed boundary 
tends to be smeared by the distribution of the singular forces over several grid 
nodes, leading to reduced spatial resolution and accuracy near the boundary 
(frequently of first order). A number of improved IBMs have been proposed, and 
only those applied to FSI problems will be mentioned here. Tai et al. [8] have 
developed an immersed object method for 3D FSI flow and applied it to simulate 
3D unsteady blood flow and blood-leaflets interaction in a mechanical heart 
valve. Borazjani et al. [9] has proposed a sharp-interface curvilinear immersed 
boundary method to simulate FSI problems involving 3D rigid bodies 
undergoing large displacements. Gilmanov and Acharya [10] have developed a 
hybrid immersed boundary and material point method for FSI problems 
involving 3D deformable bodies.        
     In the present study, a numerical method is proposed for the FSI problems of 
non-deformable rigid body based on a hybrid meshfree-Cartesian grid. The body 
motion is governed by Newton’s second law. The force and torque acting on the 
bodies are obtained by integrating the fluid traction force over the surface of the 
rigid body. Meshfree nodes are employed to discretize complex immersed 
boundaries. The boundary nodes, together with the cloud of meshfree nodes that 
cluster around the immersed bodies, which can convect against a background of 
Cartesian nodes, are used to track the motion of the bodies. Spatial discretization 
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is accomplished by the combination of a Generalized Finite Difference (GFD) 
method and conventional finite difference method (FDM) applied to the 
meshfree and Cartesian nodes respectively. The mixed Lagrangian-Eulerian form 
of the Navier-Stokes equations on convecting nodes is integrated by a second-
order Crank-Nicolson based projection method. Error minimization in GFD is 
carried out by singular value decomposition (SVD). A time-implicit iterative 
procedure is employed to compute the new/evolving position of the immersed 
bodies together with the dynamically coupled solutions of the flow field and 
body.  

2 Method 

In the present study, the motion of the body is described by convecting the mesh-
free nodes against a background of Cartesian nodes. The flows of the 
incompressible and viscous fluid on Cartesian nodes and on the convecting 
mesh-free nodes are governed by Navier-Stokes equations in the standard form 
and a mixed Lagrangian-Eulerian form [1, 11], respectively. The standard 7-
point central finite difference scheme is applied at all Cartesian nodes that do not 
have meshfree node(s) within its closed [-∆x, ∆x] × [-∆y, ∆y] × [-∆z, ∆z] 
neighbourhood. Cartesian nodes that are overlapped by a meshfree nodal cloud 
are excluded from flow computation to reduce unnecessary computations as well 
as to maintain good nodal quality. The meshfree nodes that are located on and 
around the boundary of the immersed bodies, and the Cartesian nodes that have 
one or more of cloud nodes within their [-∆x, ∆x] × [-∆y, ∆y] × [-∆z, ∆z] 
neighbourhoods are subject to the SVD-based generalized finite difference 
(GFD) treatment [12, 13].  A second-order implicit projection method, based on 
a fractional-step Crank-Nicolson scheme is applied for the temporal treatment of 
the flow equations. The detailed information on the numerical treatment can be 
found in the previous works of Chew et al. [11], Ang et al. [12], and Wang et al. 
[13]. Here the attention is focused on the dynamics of rigid body and the 
coupling of its motion to the flow of the surrounding fluid. 
     The configuration of the rigid body is specified geometrically in a separate 
frame, termed the body frame. The body frame will translate and rotate with 
respect to the global/computational frame in accordance with the dynamic 
motion of the body. For simplicity, the origin of the body frame is placed at the 
centre of mass of the body. If we use a vector Xc(t) to describe the translation of 
the centre of mass of the body and a 3×3 matrix Rc(t) to describe the 
rotation/orientation of the body about the centre of mass, the transformation of 
an arbitrary point XP0(0) on the rigid body in the body frame into a new position 
XP0 (t) in the global frame can be expressed as: 

( ) ( ) ( ) ( )0 0 0P c c PX t X t R t X= +                                        (1) 
The motion of the rigid body obeys Newton’s laws. The linear and angular 
momentum equations have the forms given by: 

( ) ( )P t Mv t=                                                       (2) 
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( ) ( ) ( )L t I t tω=                                                 (3) 

where the P(t) and L(t) are the total linear and angular momentums of the rigid 
body, respectively, v(t) and ω(t) are the linear and angular velocity of the rigid 
body, respectively, M is the mass of the rigid body and I(t) is the inertia tensor of 
the rigid body. The relationship between Rc(t) and ω(t) is linked by: 
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The relationships between the total force F(t) on the rigid body and the total 
linear momentum P(t) is: 

( ) ( )P t F t=&                                                    (5) 

Similarly, the relationship between the total torque τ(t) on the rigid body and the 
total angular momentum L(t) is: 

( ) ( )L t tτ=&                                                    (6) 

To update the position and orientation of the body, a Crank-Nicholson liked 
method is used to integrate the above dynamic equations.   
     A time-implicit iterative procedure is applied for the coupling between the 
solid and fluid solver. We assume that the solutions of the flow field and body 
position and motion have been obtained at the time step n. Then we guess the 
solution of body motion at the new time step n + 1. After that, the flow field is 
computed based on the new position and motion of the body. The total body 
force F(t) and torque τ(t) are then updated and so do the position and motion of 
the body. A number of these sub-iteration steps are carried out at each time step 
until the coupled fluid/structure solution converges adequately. 

3 Results and discussion 

3.1 Free falling of a sphere in an infinite medium 

The motion of immersed body in fluids has attracted much attention due to its 
academic value and the related engineering significance associated with 
sedimentation procedure, fluidised bed etc. Here we will consider the motion of 
a sphere under the action of gravity in an infinite domain filled with a Newtonian 
fluid of viscosity µ and density ρf. The computational domain is presented 
schematically in Figure 1, which has the boundaries of X = ±L, Y = ±W, Z = ±H. 
A rigid sphere of diameter D and density ρs is initially placed at (0, 0, H/2). To 
minimize the effect of the boundaries, the lengths of the computational domain 
are set as L = 7.5D, W = 7.5D, H =12.5D and the Neumann boundary condition 
is applied at all the boundaries. 
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Figure 1: Computational domain of the flow induced by a freely falling 
sphere. 

 

 

Figure 2: Streamtraces of flow field around a freely falling sphere at Re = 
100; the sphere has reached its terminal velocity.  
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     The Reynolds number of the falling sphere was based on its diameter and the 
terminal velocity uT in an infinite medium, which can be written as: 

Re f TDuρ µ=                                                    (7) 
A relationship for the drag coefficient introduced by Abraham [14] was used to 
determine the terminal velocity: 

2

2

24 9.06 1
9.06 RedC  

= + 
 

                                              (8) 

The detailed fluid parameters used in the present simulation are: D = 1 m, ρs = 
1.05 kg/m3 and ρf = 1.05 kg/m3. The viscosity µf of the fluid is changed to obtain 
different Reynolds number. 
     Figure 2 presents the streamtraces of the flow field in the x-z central planes at 
Re = 100. Note that the present streamtraces is plotted against the global frame. 
If the reference frame is attached to the sphere, a pair of standing eddies behind 
the sphere, with its length consistent with that of a uniform flow past a stationary 
sphere at the same Re, can be observed.  
     The terminal velocity uT of the freely falling sphere at different Re is 
presented in Figure 3. The solid line is computed based on the equilibrium of 
external forces acting on the sphere; comprising the weight, the buoyancy force 
and the hydrodynamic drag given by Eq. (8). The empty square symbols 
represent the results obtained by the present simulations. The two results show 
very good agreement.  
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Figure 3: Comparison of terminal velocity at different Re.  
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3.2 A freely rotating sphere in simple shear flow 

The present case considers a freely rotating sphere in simple shear flow at finite 
Reynolds number. The densities of the sphere and the fluid are identical so that 
the sphere can freely suspend in the fluid. The shear flow Reynolds number is 
defined as Re = GR2/ν, where G is the shear rate of the Cartesian simple shear 
flow ( , 0, 0)U GY= −

v
, R is the radius of the sphere, and ν is the kinematic 

viscosity of the fluid. The sphere is located at the centre of the channel with 
boundaries at X = ±L, Y = ±H, Z = ±W.  The size of domain is limited at L = 2R, 
H = 2R and W = 20R to maintains the channel Re at values which were found to 
remain stable. At the side walls, a condition of return to simple shear flow, 

xU GYe= −
v v , is imposed. While at the inlet and outlet (X = ±L), the Neumann 

boundary condition is applied. 
 

 

Figure 4: Schematic of computational domain of a neutrally buoyant sphere 
in shear flow. 

 

 

Figure 5: Flow field around a freely rotating sphere in simple shear flow at 
Re = 20.  

     Figure 5 shows the streamtraces of the flow field in x-y central plane at Re = 
20. Due to the presence and the rotation of the sphere, there are reverse flows on 
both sides of the sphere. Also, the flows on the two sides are not symmetric due 
to the rotation of the sphere. The normalized rotation rate of the sphere (scaled 
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by the shear rate G) is computed and compared with the data in literature as 
shown in Figure 6. The rotation rate increases with a decrease in Re and 
approaches the value of 0.5 when Re → 0, the Stokes limit. The present results 
agree well with those of Mikulencak and Morris [15]. The small discrepancy 
may be due to the difference domain size and boundary conditions used. 
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Figure 6: Rotation rates for a freely suspended sphere in simple shear flow. 

4 Conclusion 

In the present paper, we extend the SVD-GFD method based on the hybrid 
meshfree-Cartesian grid [11-13] to simulate 3D FSI problems for rigid bodies 
undergoing large boundary motion. The boundary geometry of the rigid body is 
precisely represented by the meshfree nodes, which convect with the motion of 
the body. A mixed Lagrangian-Eulerian form of the incompressible Navier-
Stokes equations governs the flow at meshfree nodes. Discretization at meshfree 
nodes is performed with a singular value decomposition based generalized finite 
difference (SVD-GFD) scheme. Discretization at Cartesian nodes in the bulk of 
the computational domain is carried out by cost-efficient accurate standard finite 
difference method. A fraction-step projection method is used to integrate the 
flow equations. The present scheme is validated by two FSI problems: a freely 
falling sphere in an infinite fluid medium for translational motion and a freely 
rotating sphere in a simple shear flow for rotational motion. The good agreement 
of the present numerical results with the published results demonstrates the 
effectiveness and potential of the present hybrid meshfree-Cartesian grid scheme 
for solving complex FSI problems in 3D. 
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