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Abstract 

Most of the studies dealing with transport phenomena in porous media are based 
on presuming the fluid that saturates the porous domain is incompressible and 
viscous, where the mass density is a constant quantity, the velocity does not 
depend on the mass density and pressure is simply a force in the linear 
momentum equation. However, in numerous natural and engineering systems, 
density-dependent flow processes play an important role. Besides various 
applications in the dynamics of pure viscous fluids, such a phenomenon can also 
be found in subsurface hydrology, geophysics and reservoir mechanics, which 
are all concerned with problems due to the presence of a permeable solid - 
porous media. In the present work, fully developed boundary element method 
(BEM) numerical scheme is presented for the simulation of density dependent 
flow (compressible fluid flow) in porous media with restriction to the subsonic 
flows. The method is applied to consider heat and mass transfer in a closed 
porous cavity saturated with compressible fluid, differentially heated under large 
temperature and concentration gradients. The results in terms of velocity, 
temperature and species redistribution, as well as the total heat and mass transfer 
across the cavity, will be presented for different governing parameters. 
Keywords: porous media, compressible fluid flow, boundary domain integral 
method, boundary element method, natural convection. 

1 Introduction 

The boundary element method (BEM), which has been established for the 
viscous incompressible fluid motion in porous media [1], is modified and 
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extended to capture the compressible fluid state with restriction to the subsonic 
flows where the difference in mass density significantly changes the velocity 
field, but there are no shock waves and no sudden sharp changes in the values of 
the field functions. Furthermore, the pressure is a thermodynamic quantity, 
which is temperature and mass density dependent. The flow is modelled by 
utilizing the Brinkman extended Darcy momentum equation (Brinkman model), 
which is commonly used when it is important to satisfy the no-slip boundary 
condition on impermeable surfaces that bound the porous media domain. The 
governing equations are transformed by using the velocity-vorticity variables 
formulation and therefore the computation scheme is partitioned into kinematic 
and kinetic parts.  

2 Mathematical formulation 

The fundamental processes of flow and transport in porous media are presented 
by the standard continuum approach. The physical properties such as velocity, 
pressure, temperature and concentration are continuously distributed in space and 
thus exist for any infinitely small material point. However, in practical problems 
of course, mass, motion, energy and concentration related quantities cannot be 
measured and solved at the microscopic level due to the geometric complexity of 
the real porous domain. Therefore, transformation to the macroscopic level by 
averaging over representative elementary volume is required. This procedure 
leads to measurable and solvable quantities for which the continuum approach is 
then invoked. The basis of density dependent flow and the transport model is 
stated by the fundamental physical principles of the conservation of mass, 
momentum, energy and species [2]: 
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     The parameters used in equations are: iv  volume-averaged velocity, ix  the i-
th coordinate, φ  porosity, t time, ρ  density, µ  dynamic viscosity, jxp ∂∂  the 
pressure gradient, ig  gravity, K permeability of porous media, µ̂ coefficient of 
bulk viscosity, T is temperature, eλ  the effective thermal conductivity of the 
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porous media given as sfe )( λφφλλ −+= 1 , where fλ  and sλ  are thermal 
conductivities for the fluid and solid phases, respectively. Furthermore, fp )c( ρ  
and sp )c( ρ  represent heat capacity for the fluid and solid phases, C  is 
concentration and D  is used for mass diffusivity. Introducing new variables 

φρρ =′  and φjj vv =′ , and with the definition of Stokes material derivative of 
the variable ( )⋅  as ( ) ( ) ( ) kk xvttDD ∂⋅∂+∂⋅∂=⋅ , the continuity equation can be 
written as 
 

tD
D

x
v

j

j ρ
ρ

′
′

−=′=
∂

′∂ 1D ,                                              (5) 

 
where D′ represent a local expansion rate. According to Stokes hypothesis the 
second viscous coefficient can be taken as µµ 32ˆ −= . Because of analytical 
reasons to develop the velocity-vorticity formulation of governing equations, the 
momentum eq. (2) is worth writing in its extended form [3, 4] 
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with the introduction of the vorticity vectorω , representing the curl of the 
velocity vector,  
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and having in mind that in our case the original vorticity is replaced by the so-
called compressible vorticityω′ , ( )ωφω 1=′ . It is important to stress that 
porosity φ  is taken to be constant over individual subdomains, but is changeable 
in respect to the whole computational domain. 
     Representing the material properties as a sum of a constant and variable part 
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then the momentum, energy and species equations (6), (3) and (4) are written as 
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where a  is thermal diffusivity. In the pseudo body force term m

if , pseudo heat 

source term m
TS  and pseudo species source term m

CS  the effects of variable 
material properties, are included and given by 
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3 Numerical method  

The numerical method chosen for this investigation is the Boundary Domain 
Integral Method (BDIM) based on the classical Boundary Element Method.  
     The kinematic is given by velocity vector Poisson’s equation 
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representing the mass conservation equation (1) and the vorticity definition (7), 
expressing the compatibility and restriction conditions between velocity, 
vorticity, and mass density field functions.  
     The vorticity kinetics is given by the vorticity transport equation obtained as a 
curl of the momentum equation (9) in the form 
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     The vorticity transport equation (16) is a highly nonlinear partial differential 
equation due to the products of velocity and vorticity having in mind that the 
velocity is kinematically dependent on vorticity. Due to the buoyancy force and 
variable material property terms, acting as additional temperature and pressure 
dependent vorticity source terms, the vorticity transport equation is coupled to 
the energy and pressure equations, making the numerical procedure very severe.  
     In the compressible fluid dynamics the pressure is a thermodynamic quantity 
that is temperature and mass density dependent. Writing the momentum equation 
(9) for the pressure gradient we have  
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     To derive the pressure equation, depending on known field and material 
functions, the divergence of equation (17) should be calculated, resulting in the 
elliptic Poisson pressure equation 
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     Equations (15), (16), (10), (11) and (18) represent the leading non-linear set 
of coupled equations to which the weighted residual technique of the BDIM has 
to be applied in establishing integral representations corresponding to original 
differential conservation equations. Each of those equations can be written 
following the general differential conservation equation where the linear 
differential operator can be either elliptic or parabolic. The velocity potential 
equation and a pressure equation are recognised as nonhomogeneous elliptic 
vector Poisson equations, while the formulations of the integral representation 
for the vorticity kinetics, heat energy kinetics and species kinetics are based on 
an elliptic diffusion-convection character of the leading partial differential 
equations. For the numerical approximate solution of the field functions, namely 
the velocity, vorticity, pressure and temperature, the integral equations are 
written in a discretized manner in which the integrals over the boundary Γ  and 
domain Ω  are approximated by a sum of the integrals over all boundary 
elements and over all internal cells. In such a way we obtain the matrix form of 
the equations, which are solved by coupling kinetic and kinematic equations, 
considering the corresponding boundary and initial conditions. The integral 
formulation has been presented in detail previously by Jecl et al. [5], therefore 
only the resulting matrix form of the equations for kinematics, vorticity kinetics, 
heat energy kinetics and pressure are presented here. As the computational 
results of the present work are limited to the two-dimensional case, all the 
subsequent matrix equations are consequently written for the case of planar 
geometry only.  
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where kinematic viscosity 0ν  is defined as 000 ρµν = . In all above equations 
the matrices [ ] [ ] [ ]jD,G,H  and [ ]B  are the influence matrices and they are 
composed of integrals taken over the individual boundary elements and over the 
internal cells. In order to improve the economics of the computation, and thus 
widen the applicability of the proposed numerical algorithm, the subdomain 
technique is used, where the entire solution domain is partitioned into 
subdomains to which the same described numerical procedure can be applied. 
The final system of equations for the entire domain is then obtained by adding 
the sets of equations for each subdomain considering the compatibility and 
equilibrium conditions between their interfaces, resulting in a much sparse 
system matrix suitable to solve with iterative techniques. In our case each 
quadrilateral internal cell represents one subdomain bounded by four boundary 
elements. The geometrical singularities are overcome by using 3-node 
discontinuous quadratic boundary elements combined with 9-node corner 
continuous internal cells.  
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4 Test example  

The extended numerical algorithm was tested on the problem of natural 
convection in a porous cavity where the vertical walls are held at different 
temperatures and the horizontal walls at different concentration values. In 
literature this phenomena is normally called double diffusive natural convection. 
The enclosure is filled with porous material, which is homogeneous and 
isotropic. The saturating density dependent fluid and the solid matrix are both in 
local thermodynamic equilibrium. The flow is assumed to be steady, laminar, 
and compressible. Detailed presentation of the geometry and boundary 
conditions are given in Fig. 1. 
 

 

Figure 1: Geometry and boundary conditions for the cavity. 

Table 1:  Parameters and boundary conditions for the solved problem. 

Dimension of the cavity L × H = 0.01m ×0.01m 
Porosity φ = 0.1 
Permeability K = 10-6, 10-7, 10-8 m2  
Reference temperature T0 = 600 K 
Reference pressure p0=101325 Pa 
Reference density ρ0 = 0.5884 kg/m3 
Dynamic viscosity µ0 = 0.295⋅10-4 Pa⋅s 
Specific heat (fluid phase) cf = 1004.5 J/kg K 
Specific heat (solid phase) cs = 800 J/kg K 
Temperature of cold wall Tc = 240 K 
Temperature of hot wall Th = 960 K 
Concentration of upper wall Cu=0% 
Concentration of bottom wall Cb=1% 
Coefficient of molecular diffusivity D=10-6 m2/s 
Rayleigh number Ra = 103 
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     The governing parameters for the presented example are given in Table 1. An 
orthogonal 10 × 10 stretched grid in both dimensions was used for computations, 
where the grid aspect ratio was 6. The computations were performed for Ra = 
1000, where the cold wall is imposed to temperature Tc = 240 K and the hot wall 
to temperature Th = 960 K, the concentration at the bottom wall is Cb = 1% and 
at the upper wall Cu = 0%. The value of porosity is φ = 0.1, the values of 
permeability are K = 10-6, 10-7, 10-8 m2. 
     The steady state numerical simulation results for the temperature, 
concentration and velocity fields are presented in Figures 2, 3 and 4.  
 

 

Figure 2: Temperature contours for Ra=103, porosity value φ=0.1 and 
permeability left K=10-6 m2, middle K=10-7 m2, right K=10-8 m2. 

 

Figure 3: Concentration contours for Ra=103, porosity value φ=0.1 and 
permeability left K=10-6 m2, middle K=10-7 m2, right K=10-8 m2. 

     The most evident difference in comparison to incompressible fluid flow is the 
asymmetry of the flow, temperature and concentration fields. As permeability 
increases the patterns became more and more alike to pure fluid situation. 
     In the Table 2 the results of overall Nusselt number Nu (representing total 
heat transfer through the cavity) and Sherwood number Sh (representing total 
mass transfer trough the cavity) for different values of permeability are listed. It 
is evident that with any decrease in the permeability, the Nusselt and the 
Sherwood number increases. Identical conclusions can be found in reference [7], 
while no direct comparison of the results is possible, because of different values 
of some governing parameters. 
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Figure 4: Velocity vectors for Ra=103, porosity value φ=0.1 and 
permeability left K=10-6 m2, middle K=10-7 m2, right K=10-8 m2. 

Table 2:  Nusselt and Sherwood numbers at different values of K and φ=0.1. 

 K = 10-6 K = 10-7 K = 10-8 
Nu 1.299 1.487 1.817 
Sh 2.033 4.891 7.825 

5 Conclusion 

The boundary element integral approach for the numerical solution of 
compressible fluid motion in porous cavity is presented. The derived numerical 
model is characterized by the decomposition of flow into its kinematics and 
kinetics, a result of the velocity-vorticity formulation of the modified (porous) 
Navier-Stokes equation for a compressible fluid. The described numerical 
algorithm leads to strong coupling between velocity, vorticity and mass density 
fields, resulting in a stable numerical scheme. The proposed numerical procedure 
is studied for the case of double diffusive natural convection in square porous 
cavity. The characteristics of the flow, temperature and concentration fields in 
the cavity are analysed for different parameters. The results indicated that the 
BDIM as extended from BEM could be efficiently used also for solving the 
transport phenomena in porous media saturated with compressible fluid. 
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