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Abstract

We present an extension of the classic phase-field model to incorporate
hydrodynamic effects and compressible fluid flow. The methods of the extended
irreversible thermodynamics are used to derive the dynamic equations for the
solidification process. We present also some numerical solutions of the model,
which show to what extent the crystal growth deviates from the pure diffusive
description of the process.

1 Introduction

The growth of a crystal from the melt is a complex phenomenon which
involves many physical effects. The rejection of the latent heat (and solute,
for alloy solidification), away from the solid-liquid interface is accompanied
by the formation of thermal and solute boundary layers which strongly affect
the morphological instability of the interface. Moreover across the interface the
density changes, (the solid is generally denser than the liquid); the change ranges
from a few percent for simple metals to more than 20% for some eutectic
mixtures. The shrinking, or in some cases the dilatation, of the system causes an
advection flow in the liquid phase. Then, even in absence of gravity, the purely
diffusive picture for the conserved fields in the bulk phases should be extended, to
incorporate hydrodynamic effects.

Flow effects in solidification may be treated through an extension of the
phase-field model [1]. In the classic formulation of the model, a non-conserved
order parameter φ(x, t) characterizes the phase of the system at each point.
A suitable free energy (or entropy) functional is then constructed, that depends
on the order parameter as well as on the associate fields and their gradients.
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The dynamic equations for the process are derived through the extremization of
the thermodynamic potential in respect to these variables.

In the present paper we present a model which incorporates flow effects due
to density change. The solid phase is modeled as an isotropic fluid with large
viscosity. The density is treated as an independent dynamic variable, related to the
local pressure via an equation of state. The entropy production equation, coupled
with the balance of mass, momentum and energy, is used to derive the governing
equations for the relaxation of the system.

We present some numerical solutions of the model, which show the effects
of the density changes and the liquid flow in crystal solidification. We address
also the growth of a crystal from its supercooled liquid in a closed domain
(constrained growth), assuming that the liquid expands upon solidification.
In this case the growth is contrasted by an increasing pressure, which results in
a continuous decrease of the effective supercooling; we observe that a quasi-static
approximation is a satisfactory approach to interpret the growth dynamics.

2 A phase-field model with hydrodynamics

2.1 The equations of the model

The equations of the model are derived in detailed form in [2]; here we give a short
review of the thermodynamic methods. The local state of a pure substance which
undergoes solidification is characterised by a coarse grained density ρ(�x, t), the
local temperature T and an order parameter φ(�x, t), which is assumed to take
the values φ = 0 in the solid and φ = 1 in the liquid. The velocity field is
denoted by �v, the specific energy by e′ and the specific entropy by s′. The two
latter quantities are related to the specific free energy f ′(ρ, φ, T,∇ρ,∇φ) through
standard thermodynamic relations, and involve gradient contributions. The stress
tensor is denoted by P; �JE, �JS represent the energy and entropy flux vectors
respectively, and σ is the entropy production rate. Finally, �g stands for a specific
body force field. In terms of these variables the classical balance laws read:

dρ

dt
= −ρ∇ · �v ; ρ

d�v

dt
= ρ�g −∇ · P ;

ρ
de′

dt
= −∇ · �JE − P : ∇�v ; ρ

ds′

dt
= −∇ · �JS + σ (1)

A generalised specific Helmoltz free energy is postulated as

f ′(ρ, φ, T,∇ρ,∇φ) = f(ρ, φ, T ) +
1
2ρ

[
δ2
F(∇ρ)2 + ε2F(∇φ)2

]
(2)

where f(ρ, φ, T ) is the specific bulk free energy, and the the gradient terms account
for the energy cost of the interfacial region. The differential form of the second law
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of thermodynamics, along with the balance equations (1) leads to a local form of
the entropy production rate written as:

σ = − 1
T

dφ

dt

(
ρ
∂f

∂φ
− ε2F∇2φ

)
+ �JE · ∇

(
1
T

)
+

dρ

dt
∇ρ · ∇

(
δ2
F

T

)

+
dφ

dt
∇φ · ∇

(
ε2F
T

)
− 1

T
(P + T) : ∇�v (3)

where T is a tensor with components:

Tik = δik

[
−p + ρδ2

F∇2ρ +
1
2
δ2
F(∇ρ)2 +

1
2
ε2F(∇φ)2

]
− δ2

Fρiρk − ε2Fφiφk (4)

where ρi, ρk, φi, φk stay for ∂ρ/∂xi, ∂ρ/∂xk, ∂φ/∂xi, ∂φ/∂xk. Notice that this
form of the tensor reduces to the classic capillary stress tensor at the solid-liquid
interface.

Neglecting the thermal gradient across the interface, the third and fourth terms
in Eq. (3) vanish, and the constraint of local positive entropy production requires:

dφ

dt
= −Γ

(
ρ
∂f

∂φ
− ε2F∇2φ

)
(5)

where Γ is a positive constant. We recover also the standard thermal conduction
law �JE = −K∇T , where K is the thermal conductivity. Moreover, it is reasonable
to assume that the entropy source in the last term of Eq. (3) is only due to viscous
dissipation, then we obtain P = −T − Π, with Π indicating the standard stress
tensor for viscous fluids. To find an explicit expression for the specific free energy
f , we assume that at equilibrium the latter should take the form of a double well
over the ρ, φ plane, with two minima centered at the bulk solid (ρ = ρs0, φ = 0)
and liquid (ρ = ρl0, φ = 1), where we denoted as ρs0, ρl0 the equilibrium densities
in the two phases at the coexistence temperature T0 and pressure p0.

Moreover, the free energy must be consistent with the equation of state

ρ − ρ0 = −β ρ0 (T − T0) + k ρ0 (p + P̃ − p0) (6)

where β is the thermal expansion coefficient and k the isothermal compressibility;
p is the thermodynamic pressure given by p = ρ2(∂f/∂ρ) and P̃ is the excess
pressure due to the capillary stress, written as P̃ = ε2F (∇φ)2/2 + δ2

F (∇ρ)2/2 −
ρ δ2

F ∇2ρ
A suitable expression of the free energy may be written as

f(ρ, φ, T ) =
ag(φ)

ρ
+

β

k
(T − T0)

[
ρ − ρ0(φ)

ρρ0(φ)

]
+ (p0 − P̃ )

[
ρ − ρ0(φ)

ρρ0(φ)

]

−C T ln
T

T0
+ C(T − T0) + p(φ)L0(1 − T

T0
) − (p0 − P̃ )

ρ0(φ)
+

ρ0(φ)

2k

[
ρ − ρ0(φ)

ρρ0(φ)

]2
(7)

with g(φ) = (1/4)φ2(1 − φ)2. In Equation (7) C is the specific heat and L0 the
latent heat per unit mass in the reference state. We observe a Landau–Ginzburg
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contribution for the order parameter φ (first term in the r.h.s of the equation),
and the elastic contribution of the last term. The function p(φ), monotonic and
increasing with φ, assumes the values p(0) = 0, p(1) = 1, and describes the
transition of the free energy from the solid to the liquid phase. The equilibrium
density ρ0(φ) is assumed to change in the interfacial region as ρ0 ≡ ρ0(φ) =
ρs0 + p(φ)(ρl0 − ρs0). In the sequel we assume that all the bulk properties of
the system change in the same fashion along the solid-liquid interface. Then,
Equation (5) and the mass, momentum and energy balance represent the evolution
equations for the system.

2.2 The non-dimensional form

A nondimensional form of the model equations is obtained adopting a reference
length ξ and scaling time to τ = ξ2/D, with D indicating the thermal diffusivity.
Density is scaled as ρ/ρl0 and a nondimensional temperature is introduced as
u = C(T − T0)/L0. Specific energies will be scaled to v2

0 , where v0 = ξ/τ is
the natural reference for velocities, and the specific body force is scaled to ξ2/τ .
The scale for the components of the stress tensor is ρl0v

2
0 . The equilibrium density

takes the form ρ0 = S + p(φ)(1 − S), with S = ρs0/ρl0. Retaining for simplicity
the same symbols for the scaled (nondimensional) quantities, the model equations
in two dimensions read:

dρ

dt
= −ρ∇ · �v (8)

ρ
d�v

dt
= ρ�g + ∇ · (T + Π) (9)

du

dt
+ p′(φ)

dφ

dt
= ∇2u +

1
ρR5

(Π : ∇�v) + R8
ε̃

α

R1

m

1
ρ2
0

dρ

dt
(10)

dφ

dt
= m

{
∇ · (η2(θ)∇φ

)
+

∂

∂y

[
η(θ)η′(θ)φx

]− ∂

∂x

[
η(θ)η′(θ)φy

]}

−m

ε̃2

[
∂g(φ)

∂φ
− p′(φ)ραε̃ u

]
− 1

2ρ2
0

p′(φ)ρ (1 − S)R1

(
ρ2
0 − ρ2

ρ2
− 2R8u

)
(11)

where the components of the capillary stress tensor are:

Tik = δik

[
−p0 − R1R3

m

(
R8u +

ρ − ρ0

ρ

)
+ R2(∇ρ)2 + R3(∇φ)2

]

−R2ρiρk − R3φiφk (12)

In the above equations the parameters are defined as:

m =
µγT0

Dρl0L0
; ε̃ =

h

ξ
; α =

ξ

6
√

2d0

; R1 =
µτT0

6
√

2hkρl0L0

; R2 = R3 =
6
√

2γh

ξ2ρl0v2
0

;

R4 =
ηl

τρl0v2
0

; R5 =
L0

v2
0

; R7 =
ζl

τρl0v2
0

; R8 =
βL0

C
(13)

where γ is the surface tension, h is the interface thickness, and µ is the kinetic
undercooling coefficient that relates the interface undercooling to the interface
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velocity vI through vI = µ(T0 − T ). We indicate with d0 = (γ C T0)/(ρ0L0
2)

the capillary length; ηl, ζl represent the first and second viscosity in the liquid.
Anisotropy of the surface energy is accounted for through the function η(θ) =
(1 + ωcos4θ), where θ is defined as the angle between the normal to the interface
and a fixed direction, the x axis in our calculations, and ω specifies the intensity
of the anisotropy. The numerical results presented in the following refer to the
thermophysical properties of Nickel, with an interface thickness h = 30 ·10−8 cm.
With a length scale ξ = 2 · 10−4cm, the values of the model parameters are:
α = 265; m = 0.1; ε̃ = 1.5 · 10−3; ω = 0.02; R1 = 3.53 · 106; R2 = R3 =
1.07·10−2; R4 = R7 = 0.105; R5 = 4.94·103. The numerical results are obtained
neglecting thermal expansion effects (R8 = 0) and in absence of gravity.

3 Numerical results

Now we shall present numerical solutions of the model, in a two dimensional
domain (0 ≤ x ≤ xm, 0 ≤ y ≤ ym, with xm = ym = 3.75). The boundary
conditions are of Neumann type for the phase and temperature fields, and both
permeable and impermeable for the mass flow.

3.1 Growth of a free dendrite (permeable boundaries)

In this set of solutions [3], the melt is initially at rest, at uniform temperature
u = −∆, with ∆ = 0.7; then a circular solid germ is nucleated at the center
of the domain, with a supercritical radius R0 = 0.04. In the first stage of the
growth, the sudden contraction (or the expansion) of the liquid in front of the
interface originates a pressure wave which propagates both into the solid and into
the liquid. This effect is illustrated in Figures 1 and 2 where the pressure field is
shown in the liquid at two different times; the crystal is represented as a black spot
at the center of the graph. Here the density ratio is S = 1.05, and we can clearly
observe the large pressure drop in front of the dendrite tips. The numerical results
are reported in non-dimensional units. The pressure front reaches the domain’s
boundaries, where it is reflected and redirected towards the crystal (Fig. 2).

In this stage we are far from a steady mechanical regime, nevertheless the
shape of the crystal is already well defined, with steady values for both the tip
velocity and the tip radius. However, the Peclet number P = Rtipvtip/2D, which,
according to the diffusive description of the process [4] should be only dependent
on ∆, is affected by the advection flow driven by the density change. We observed
that the Peclet number is almost constant for 0.80 ≤ S ≤ 0.95, then decreases
with increasing S between 0.95 ≤ S ≤ 1.20.

3.2 Growth in a closed system (constrained growth)

Here we present numerical solutions [5] for the growth of a dendritic crystal
with impermeable boundary conditions, assuming S = 0.85, i.e. the liquid
expands upon solidification. Then, the growth is contrasted by an increasing
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Figure 1: The pressure wave originated at the solid-liquid interface at time
0.81 · 10−2. In order of increasing darkness the five zones represent
pressure values −25 ≤ p ≤ −20, −20 ≤ p ≤ −15, −15 ≤ p ≤ −5,
−5 ≤ p ≤ −0.1, −0.1 ≤ p ≤ 0.

pressure, which results in a continuous decrease of the coexistence temperature. In
Figures 3 and 4 we represent, versus time, the tip velocity and the tip radius of the
dendrite, for both free and constrained growth. We observe, for an open system,
the well known steady regime. On the contrary, in a closed system the growth
is characterized by a continuous decrease of the effective supercooling, and we
observe that the tip velocity decreases with time and the tip radius increases.

An interesting question is whether in a closed system the growth follows a
quasi-steady dynamics, adapting instantaneously to the variation of the effective
supercooling. We observe that the Clapeyron’s equation, in non-dimensional form,
may be written as

uπ =
ε̃

α

S − 1
S

1
R3

(p − p0) (14)

related to the pressure shift (p − p0). The latter, averaged over the entire system,
may be estimated as

< p − p0 >=
R1R3

m

[
1

1 + xs(S − 1)
− 1

]
(15)

where xs is the actual solid fraction. The effective supercooling which drives the
solidification, is ∆∗ = ∆ + uπ. We observed that along the growth, the Peclet
number is well approximated by the values obtained for steady growth in an open
system, with a supercooling ∆ corresponding to the instantaneous values of ∆∗.
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Figure 2: The pressure wave originated at the solid-liquid interface at time
4.05 · 10−2. In order of increasing darkness the five zones represent
pressure values −25 ≤ p ≤ −20, −20 ≤ p ≤ −15, −15 ≤ p ≤ −5,
−5 ≤ p ≤ −0.1, −0.1 ≤ p ≤ 0.

Figure 3: Dendritic growth. Tip velocity versus time in an open and a closed
system.

4 Conclusions

The numerical solutions presented in this paper show to what extent the growth of
a free dendrite deviates from the pure diffusive description of the process, when
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Figure 4: Dendritic growth. Tip radius versus time in an open and a closed system.

the advection flow effects are taken into account. Both the tip velocity and the tip
radius, as well as the Peclet number, depend on the density ratio S.

We observed also that volumetric effects can influence constrained crystal
growth in a significant manner. The melting temperature shift driven by the
pressure change along the growth reduces the thermodynamic force available for
solidification. In dendritic solidification the melting temperature shift destroys
the steady regime, and the tip radius and velocity change with time. However,
after the first fast transient, the Peclet number seems to be well approximated
by the values obtained in steady conditions, with a supercooling corresponding
to the instantaneous actual supercooling. This indicates that a quasi-steady
approximation is a satisfactory approach to interpret the growth dynamics.
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