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Abstract 

The analysis of the interaction between the flow and the fluid and an object 
represents a classical challenge for modern numerical techniques. Current work 
will concentrate on the case of bluff-body cross-sections featuring sharp corners 
and a clear predominance of the shape resistance over the friction resistance. For 
this category of structures the dynamic behaviour of the overall coupled system 
plays a very important role. In this work, the interest focuses on the behaviour of 
a beam structure subjected to a flow orthogonal to the beam axis. Under this 
assumption the flow at two points, at reasonable distance, will present little 
correlation, which allows to consider the flow at one point as uncoupled from the 
flow at other points along the same beam. This suggests the possibility of 
“slicing” the fluid domain in a number of independent two-dimensional planes 
on each of which the problem can be solved separately. Conceptually the 
solution on each slice will provide a force density acting on the beam, obtained 
by integrating the pressure of the fluid over the corresponding cross-section. This 
can be interpreted as a time-varying distributed load over the beam. The 
aeroelastic analysis of a slender beam is performed coupling a Navier Stokes 
Solver with the structural model. In the analysis of the structure is used a 
monodimensional structural model applicable to thin−walled composite beams, 
which can have either an open or closed profile with either a single- or multiple-
cell section. However, in the application example presented here, a steel chimney 
90 meters tall is analyzed. 
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1 Introduction 

Over the last 40 years the Finite Element Method (FEM) experimented an 
exponential growth which led to the definition of a set of reliable computational 
techniques for many different problems. This maturity, together with the 
increasing availability of powerful computational resources gave rise in 
relatively recent times to an increasing interest in coupled problems.  
     The recent works [1, 2], provide an interesting introduction to the subject 
together with a review of modern analytical techniques for the assessment of 
stability and accuracy of different staggering techniques. The case treated is 
mostly that of structure-structure interaction which represents a limit case of 
coupled system; however some results are general and can be extended to a 
broader range of fields. 
     Particularly in the case of interaction between flexible structures and 
incompressible fluids (model led using the Navier-Stokes equations), which is 
the case of interest for us; the assumption of linearity for the fluid simply does 
not hold because of the mathematical structure of the problem. Given the non 
linearity of the problem, the two coupled fields involve the definition of a non-
linear system of equations which could be linearized using the Newton–Raphson 
method. As expected, the off-diagonal terms of the tangent stiffness matrix 
express the dependency of one field on the variations of the second. It can be 
observed how because of the mathematical structure of the fluid problem any 
perturbation on the boundary propagates very quickly (at the limit 
instantaneously for truly incompressible fluids) to the whole fluid domain. Even, 
if the linearization of the fluid field were possible in theory, it would not be 
usually performed as it is often preferred to rely on fixed point type iterations to 
solve the non linearities. It follows that the calculation of the jacobian would 
involve a complete redefinition of the fluid strategy which is a nightmare from 
the point of view of software modularity. 
     Finally, it is generally difficult to find a satisfactory test system particularly as 
the requirement of “physical stability” is often not easy to meet in the practice 
which endangers the last assumption. 
     Two main approaches exist to solve the impasse. One “purely algebraic” 
focused on the techniques to solve iteratively the system of equations. The 
second approach focused on “explicit” coupling techniques where convergence 
to the coupled solution is obtained by adjustment of the predictors and of the 
data transferred between the domains. 
     Given the absence of a common mathematical formulation for the two 
coupled fields, the investigation of the stability properties of the different 
methods is in this case extremely challenging. A 1-D case is investigated by 
Larroutorou et al [3] (for a compressible case) while Farhat and Piperno [4] a 
simple test is advocated to assess the prophension of a given method to 
instability. Even, if the proposed method has no general mathematical validity it 
was shown to discriminate successfully stable methods from unstable techniques. 
The techniques proposed were tested on large aeronautical examples (e.g. Brown 
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et al [5]) and provided satisfactory results in describing experimental flutter 
envelopes on real aircrafts. 
     Relevant contributions to the subject (for the incompressible case) can be 
found in Del Pin et al [6], where the interaction problem is naturally dealt with 
by using an innovative lagrangian formulation for the fluid flow which allows to 
deal naturally with arbitrarily large mesh displacements. The method described is 
based on an extremely fast mesh regeneration technique joint with a fractional 
step formulation for the fluid domain. 
     Finally, Space-Time Finite Element based approaches can be found in Hubner 
et al [7] and Dinkler et al [8] with reference to both civil and aeronautical 
applications. Examples of applications to large scale cases of flexible civil 
engineering structures can be found in Gluck et al [9] and Halfmann et al [10]. 
     On the other hand, the structural model used to solve the structure has been 
developed by de same authors Foces et al [11]. This model was developed for 
the analysis of thin-walled composite beams. Each wall is made of orthotropic 
layers bonded together to form a laminate that can be anisotropic. A beam 
element was got which is suitable for the simulation of both open-section or 
closed-section beams of arbitrary section shape with arbitrary layup. 
Nevertheless, this structural model is applicable to isotropic beams, since these 
are a particular case of the previous ones. 

2 Structural model 

In general lines, an analytical monodimensional model was developed by Foces 
et al [11] to describe the behaviour of a thin-walled composite beam in bending 
and torsion. 
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Figure 1: (a) Coordinate systems. (b) Generalized beam forces and moments. 

     The methodology proposed uses a Love–Kirchoff shell model to relate the 
stresses and strains in the shell. In this relation are introduced the generalized 
beam deformations corresponding to the Navier–Bernoulli and Vlasov models 
through geometric considerations. By integrating the stresses on the cross 
section, a relation between the generalized stresses and strains of the beam in the 
form of a symmetric 5 × 5 cross-sectional stiffness matrix K, is got.  
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= ⋅F K q  (1)
where 

T
y z sN M M T Mω =  F  

, , , , ,
T

x y x z x x xxU β β φ φ =  q  
(2)

where N is axial force, My and Mz are bending moments about the y and z 
directions respectively, Vy and Vz are transverse shear forces, Ts is the St. Venant 
twisting moment,  Mω is a Vlasov bimoment, U is the displacement of the beam 
along x-axis, βy and βz are rotations of the cross-section beam about the y and z 
axes respectively, and φ is the twist of each section around the x-axis, fig. 1. 
Finally, a beam element can be obtained applying the Principle of Virtual Works  

( )

( ) ( )

e

e e

V

dV q fδε σ δ⋅ ⋅ = ⋅∫   (3)

Two different types of interpolation functions are introduced to describe the 
behaviour of the beam. For the axial displacement U, a two-node Lagrangian 
representation is used. For the cross-sectional rotations βy and βz, and for twist 
deformation φ and its derivative φ,x, a two-node Hermite shape function is 
employed to satisfy the C1 continuity at each extremity of an element. These 
yield a total of 14 degrees of freedom for each finite element that can describe 
extension, bending, and torsion. Introducing this finite element representation 
into the energy expression, eqn (3), we obtain the following set of finite element 
beam equations 

g g= ⋅F K q  (4)
where K and Fg are the finite element system of stiffness matrix and load vector 
respectively, and qg is the generalized displacement vector for the beam. 

3 Fluid-structure coupling 

Multidisciplinary problems involving Fluid-Structure Interaction (FSI) are 
common in engineering design. In this case, a monodimensional structural model 
has to be coupled to the fluid flow. In order to perform the coupling it is 
therefore necessary to associate to the beam its three-dimensional “skin”. Under 
the usual assumptions, the motion of the beam axis describes univocally the 
motion of its cross section, which can be imagined as a rigid body which follows 
the translation and the rotation of the beam axis. 
     This allows associating to each point of our monodimensional beam, assumed 
to be oriented as the Oz-axis, a section of finite dimensions lying in the xy-plane. 
Given the hypothesis of small-strains, the motion of the cross section outside of 
the xy-plane can be neglected. This is not consistent with the kinematics 
hypothesis on the beam motion but can be accepted, as a very good 
approximation, for the only purpose of describing the motion of our beam 
imagined as a three dimensional object. The next step is the choice of the fluid 
model to be used for the structural solution.  
     Current work will concentrate on the case of bluff-body cross-sections 
featuring sharp corners and a clear predominance of the shape resistance over the 
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friction resistance. For this category of structures the dynamic behaviour of the 
overall coupled system plays a very important role. A time-accurate viscous flow 
solver is thus needed. Even if the features of the problem make possible the use 
of a rather “coarse” mesh, see for example Rossi [12], it can be immediately 
verified that the number of elements needed for a complete 3-D simulation 
makes it unviable for any realistic beam length. 
     In many cases however the interest focuses on the behaviour of a beam 
subjected to a flow orthogonal to the beam axis. Under this assumption the flow 
at two points (at reasonable distance) will present little correlation, which allows 
to consider the flow at one point as uncoupled from the flow at other points 
along the same beam. This suggests the possibility of “slicing” the fluid domain 
in a number of independent two-dimensional planes on each of which the 
problem can be solved separately. 
     Conceptually the solution on each slice will provide a force density acting on 
the beam, obtained by integrating the pressure of the fluid over the 
corresponding cross-section. This can be interpreted as a time-varying 
distributed load over the beam. The deformation of the beam in turn will provide 
a relation between the motions of the different sections which should bring the 
simulation closer to the equivalent complete three dimensional simulation. 
     As a comment, we would like to propose that the incoming turbulence can be 
taken in account by generating a spatially correlated velocity field, see for 
example Rossi et al [13], to be applied as inflow velocity between the various 
“fluid slices” while performing a FSI analysis in the vicinity of the beam. This 
could also allow investigating the importance of the buffeting action in 
initializing the flutter of a given structure, e.g. Lazzari [14], or simulating the 
interaction of different cables subjected to different levels of stress. 
     Before proceeding further, it is interesting to make a philosophic 
consideration on the nature of the coupling. The beam formulation makes use of 
the small strain hypothesis which implies that the reference and deformed 
configuration are considered to coalesce at least in writing the equilibrium. The 
motion of the cross-section on the other hand is obtained “exactly” once given 
the motion of the corresponding axis, without taking advantage of the small-
strain hypothesis. This implies that the loads acting on the structure will be 
allowed to depend in a non-linear way from the motion of the beam. This feature 
may become important for the cases in which the model moves “at the limits” of 
the small strain formulation.  
     To complete the discussion we need to choose a suitable coupling algorithm. 
The problems of interest falls in the realm of aeroelasticity and will be often 
characterized by large Reynolds numbers and flows featuring sharp separations 
at the corners of the section. Loose coupling procedures are known to perform 
very efficiently for such category of problems, see for example Farhat and 
Piperno [4]. The choice in our case will be the Fractional-Step approach 
described in Rossi [12] which assumes the form 
� Solve the structure using the loads (pressure) at time. 
� Move the mesh according to the structural motion. 
� Solve the fluid. 
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� Solve the structural problem applying the newly calculated pressure. 
The properties of this algorithm are analysed in Rossi [12]. In detail, the 
structural solution assumes, for the case of our beam, the form 
� Integrate the fluid force on the bridge section. 
� Solve the dynamic problem. 
� Move the section accordingly to the calculated motion of the beam. 
� Assign a velocity to the points of the section consistently with the mesh 

motion scheme chosen (velocity = mesh_velocity (displacement)). 
The fluid solver used is a Fractional-Step type procedure featuring a second 
order pressure splitting as described in Codina [15]. The solver allows an 
arbitrary Lagrangian–Eulerian (ALE) description of the fluid domain allowing 
dealing simply with the deformation of the fluid medium. The stability properties 
for the scheme are described in detail in Badia [16]. Stabilization of convection 
and diffusion is obtained using the Orthogonal Sub Scales (OSS) approach as 
proposed in Codina [17]. Quasi-static subscales are assumed. No turbulence 
model is included in the simulation. The structure is integrated using a standard 
second-order accurate Newmark scheme without viscous damping. 

4 Example 

The aeroelastic analysis of slender beam structures represents a rather new area 
of study. To our knowledge no experimental or numerical results are available on 
the subject, the rationale followed here is therefore to analyse a simple setup in 
order to propose a benchmark. The analysis is performed inside the code Kratos, 
a general purpose multiphysic code which was already validated in Rossi [12] in 
application to problems of aeroelasticity. 
     In order to demonstrate the application of the theories in the preceding 
sections, a steel chimney under the action of fluid flow is studied for 40 seconds. 
After this time, the fluid disappears. The chimney considered has circular cross-
section and is supposed to clamped at the root and free and the tip. The first 
natural frequency is calculated as 0.977 Hz. The diameter and the thickness of 
the structural shell vary from base to top as shown in table 1. 
     The material properties of the steel are density  ρ = 7850 kg / m3, Young’s 
modulos E = 2.1·1011 Pa, shear modulus G = 8.077·1010 Pa, and Poisson’s ratio 
ν = 0.3. The fluid is air with dynamic viscosity µ = 1.8 10-5 N s / m2 and density 
 ρ = 1.21 kg / m3. Four different planes of fluid are used, corresponding to the 
positions at 30, 60, 80 and 90 m from the clamped edge. The velocity at inflow 
follows the x-direction and in the chimney tip is 20 m / s, fig. 2. 

Table 1:  Data on the chimney. 

Height [m] Diameter [m] Thickness [m] 
0 – 30 5.20 0.022 

30 – 60 4.10 0.019 
60 – 80 3.20 0.015 
80 – 90 2.20 0.012 
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Figure 2: Chimney model the under wind action. 

     Since, four planes was used to simulate the fluid, the chimney was meshed 
with four beam elements. Structural damping (Rayleigh damping), proportional 
to the mass matrix, is assumed for the beam. To solve the coupled problem is 
necessary to solve the fluid and the structure separately; therefore a suitable time 
step has to be chosen, in our case 0.005 seconds. 
     In fig. 3 is shown the displacement time history in y-direction (cross-direction 
to wind direction) at the beam tip. As it is known, vortex-induced vibrations 
occur when vortices are shed alternately from opposite sides of the structure. 
This gives rise to a fluctuating load perpendicular to the wind direction. The 
frequency ns of this lateral load caused by vortex shedding is proportional to 

/U d∞ . The factor of proportionality is called the Strouhal number St, eqn. (5) 

s
U

n St
d

∞=  (5)

where U∞  is the along-wind velocity and d is the structure width perpendicular 
to the direction of the wind. 
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Figure 3: Displacement time history in y-direction. 

     According to eqn. (5), the frequencies of the lateral load are shown in table 2 
for the different diameters of the chimney. Strouhal number St = 0.2 is assumed. 
     The corresponding Fourier analysis (Fast Fourier Transform) of displacement 
time history in y−direction, for time lower than 40 seconds, is given in fig. 4. It is 
noticed that the chimney vibrates with frequencies near the calculated 
frequencies in theory (table 2). Indeed, the frequencies got numerically are 0.78, 
1.36 and 1.85 Hz, against 0.79, 1.17 and 1.81 Hz values got from eqn. (5). In the 
same way, the FFT analysis shows a small peak near the 0.44 Hz value, indicated 
in table 2. 

xv 20 m / s=

xv 18.85 m / s=

xv 16.33 m / s=

xv 11.55 m / s=

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 92,

Fluid Structure Interaction and Moving Boundary Problems IV  265



     The FFT analysis of free vibration of the chimney is given in Figure 5. It is 
noticed that the chimney vibrates with its natural frequency. 

Table 2:  Frequencies of lateral load. 

Diameter, d [m] Velocity, U∞ [m/s] Frequency, ns [Hz] 
5.20 11.55 0.44 
4.10 16.33 0.79 
3.20 18.85 1.17 
2.20 20.00 1.81 
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Figure 4: FFT analysis for time lower than 40 s. 
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Figure 5: FFT analysis of free vibration. 
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Figure 6: Displacement time history in x-direction. 

     In fig. 6 is shown the displacement time history in x-direction at the beam tip. 
Initially, the chimney vibrates with bigger amplitude (transitory period) until it 
reaches stationary phase where it vibrates with lower amplitude around the new 
equilibrium position. When time is 40 s, the fluid disappears and the chimney 
tends to recover the initial equilibrium position and vibrates with its natural 
frequency. The corresponding Fourier analysis (FFT) of displacement time 
history in x-direction, for time lower than 40 s, is given in fig. 7. 
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Figure 7: FFT analysis for time lower than 40 seconds. 

5 Conclusions 

A one-dimensional structural model applicable to thin-walled composite beams, 
which can have either an open or closed profile with either a single- or 
multiple-cell section, has been developed. The model includes the influence of 
the thickness of the shell wall and considers restrained torsion and secondary 
warping. Simple isotropic materials can be taken in account naturally. 
     On the other hand, current work focuses a FSI model which is appropriate for 
the simulation of slender beam structures subjected to wind load. The 
phenomenon of the flutter of a slender beam structure under the wind action is 
studied. In general, the predictions of the present analysis are in good agreement 
with theoretical results. 
     Finally, it has been possible to study successfully the free response of a 
slender beam structure when the action of the wind disappears. This opens the 
possibility of achieving simulations for structural control of the beam through the 
incorporation of control systems for the suppression of vibrations. 
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