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Abstract

Elliptical flows are of interest since they appear in various vortical flows in
which circular vortices are deformed by straining flow. We study the nonlinear
evolution of an elliptical flow by weakly nonlinear analysis. Two sets of amplitude
equations are derived for different situations. First, the evolution of bending waves
is considered. Nonlinear interaction of the two base Kelvin waves results in cubic
nonlinear terms, which leads to saturation of the elliptical instability. Next, the
secondary instability is considered. Three Kelvin waves, one of which is a bending
wave, form a resonant triad thanks to freedom of wavenumber shift. As a result
three-wave equations augmented with linear terms are obtained as amplitude
equations. They explain the previous numerical results on the secondary instability
obtained by Kerswell J. Fluid Mech., 382, pp. 283–386, 1999.
Keywords: elliptical flow, weakly nonlinear analysis, triad resonance, secondary
instability.

1 Introduction

Large-scale coherent vortical structures are ubiquitous in turbulent flows. They
are often seen to destabilize and collapse to small-scale disorder. There are
several important mechanisms of the destabilization among which are the
elliptical instability [1–5] and the curvature instability [6, 7]. Both instabilities
are the consequences of parametric resonance of two Kelvin waves mediated by
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symmetry-breaking perturbation. In the elliptical instability an imposed straining
flow resonates Kelvin waves while in the curvature instability the self-induced flow
due to the curvature of the vortex tube resonates them. These instabilities are well
understood in the framework of linear stability analysis. However, linear theory is
insufficient to explain the fast development of complicated fine-scale structures.

Weakly nonlinear analysis is a useful tool for studying the evolution of unstable
waves beyond linear theory. Although limited to the range of weak nonlinearity,
several important results are derived by it. For example, we can use it to find the
type of bifurcation and the saturation amplitude (if the bifurcation is supercritical).

In this paper, we study the nonlinear evolution of an elliptical flow by weakly
nonlinear analysis. Two sets of amplitude equations are derived for different
situations. First, the nonlinear evolution of bending waves caused by self-
interaction is considered. The resulting nonlinear terms are cubic. Next, triad
interaction is considered. Three Kelvin waves, one of which is a bending wave,
form a triad thanks to finiteness of unstable wavenumber range. The resulting
amplitude equations are three-wave equations augmented with linear terms. The
results would be useful not only in analyzing transition to turbulence but also
in studying the statistical properties of turbulence by using low-dimensional
dynamical systems.

2 Linear instability

In this section we briefly summarize the results on the linear instability of an
elliptical flow. Throughout the paper the flow is assumed to be inviscid and
incompressible, though allowance may be made for small viscosity [3].

The base flow U is set to the sum of rigid body rotation and plain strain inside
an elliptical cylinder. In a cylindrical coordinate system (r, θ, z), the velocity field
(U, V, W ) and the pressure P of the base flow is expressed as

U = U0 + εU1,

U0 = W0 = 0, V0 = r, P0 = r2/2 − 1,

U1 = r sin 2θ, V1 = r cos 2θ, W1 = 0, P1 = 0.

The boundary of the cylinder is r = 1 − ε/2 cos 2θ at which slip condition is
imposed. The total base flow has elliptical streamlines. The magnitude of strain ε
is assumed to be small but finite.

We add an infinitesimal disturbance u to the base flow. Perturbation expansion
is legitimate for u

u = u01 + εu11 + · · · . (1)

The leading-order disturbance is set to the following type

u01 =
∑
m

u
(m)
01 (r)ei(mθ+k0z−ω0t). (2)
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Then the linearized Euler equation for u
(m)
01 takes the following form

[−iω0L + M(m, k0)] u
(m)
01 = 0, (3)

where

L =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


 , M(m, k) =




im −2 0 d
dr

2 im 0 im
r

0 0 im ik
d
dr + 1

r
im
r ik 0


 .

In order to have non-trivial solutions the operator −iω0L + M(m, k0) should be
degenerate. This leads to dispersion relations between ω0 and k0 (fig. 1). The
solutions are the well-known Kelvin waves, which are neutrally stable.

-3

-2

-1

0

1

2

3

0 1 2 3 4 5 6 7

ω
0

k0

Figure 1: Dispersion relations of Kelvin waves: m = ±1.

Since the straining flow U1 has wavenumber two in θ, a pair of Kelvin waves
whose wavenumber m differ by two can lead to parametric instability. In this case
ω0 and k0 should be a cross point of the dispersion curves of the two Kelvin waves.
We focus on stationary bending waves: m = ±1, ω0 = 0. We set

u01 = A+u
(1)
01 (r)ei(θ+k0z) + A−u

(−1)
01 (r)ei(−θ+k0z) (4)

(complex conjugate of A− is introduced for convenience). Then the equations for
u11 have forcing terms

M(1, k0)u
(1)
11 = A−N+(−1)u(−1)

01 , M(−1, k0)u
(−1)
11 = A+N−(1)u(1)

01 . (5)
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Since the above equations are singular, compatibility conditions force the
amplitude of the Kelvin waves to vary slowly with time scale ε−1 so that eqn. (5)
is made solvable

M(1, k0)u
(1)
11 = A−N+(−1)u(−1)

01 − dA+

dτ
Lu

(1)
01 ,

M(−1, k0)u
(−1)
11 = A+N−(1)u(1)

01 − dA−
dτ

Lu
(−1)
01 ,

where τ = εt and N+ = N− is defined by

N+(m) =
1
2




i(1 − m) + ir d
dr 0 0 0

−2 i(−1 − m) + ir d
dr 0 0

0 0 −im + ir d
dr 0

0 0 0 0


 .

Closed form solutions are available [5]. Finally we arrive at

dA+

dτ
= iaA−,

dA−
dτ

= iaA+. (6)

For the present case, a turns out to be real so that the system is unstable
with exponential growth rate |a|. In general the stability of the above system is
determined by the sign of energy of the two Kelvin waves: a pair of positive- and
negative-energy waves or of zero-energy waves leads to instability [5].

3 Weakly nonlinear analysis

3.1 General procedure

Let us expand the total velocity field uT in both shear strength ε and disturbance
amplitude α

uT = U0 + εU1

+ αu01 + α2u02 + α3u03 + · · · + εαu11 + εα2u12 + · · · . (7)

Similar expansions are assumed for pressure pT . Note that ui1 in (1) corresponds
to αui1 in (7).

We substitute (7) into the Euler equations

∂uT

∂t
+ uT · ∇uT = −∇pT , (8)

∇ · uT = 0. (9)

At each order O(εiαj) we obtain linear equations. Depending on the combination
of modes in the leading-order disturbance u01, solvability conditions force the
amplitude of the modes to vary slowly, which derives amplitude equations [8].
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3.2 Nonlinear saturation of the linear instability

First, we consider nonlinear evolution of bending waves u01 = A+ei(θ+k0z) +
A−ei(θ−k0z) + c.c., due to self-induced nonlinearity.

At O(α2) the equation is

∂u02

∂t
+ U0 · ∇u02 + ∇p02 = −u01 · ∇u01, (10)

∇ · u02 = 0. (11)

The solution is in the form

u02 = A2
+ei(2θ+2k0z)uA+A+ + A2

−ei(2θ−2k0z)uA−A−

+ A+A−ei2θuA+A− + A+A−ei2k0zuA+A− + c.c.

+ |A+|2u|A+|2 + |A−|2u|A−|2 ,

where u|A±|2 is shown to vanish.
At O(α3) the equation is

∂u03

∂t
+ U0 · ∇u03 + ∇p03 = −u01 · ∇u02 − u02 · ∇u01, (12)

∇ · u03 = 0. (13)

The solution is in the form

u03 =
(|A+|2A+u|A+|2A+ + |A−|2A+u|A−|2A+

)
ei(θ+k0z)

+
(|A+|2A−u|A+|2A− + |A−|2A−u|A−|2A−

)
ei(θ−k0z)

+ c.c. + (irrelevant terms).

Here only the terms leading to compatibility conditions are written explicitly. Since
the equations for u|A+|2A+ etc. are singular, the amplitudes A± should vary slowly
with time scale α−2. Mean flow correction should be also regarded; it arises at
O(εα2).

By setting ε = α2 we can derive the following set of amplitude equations

dA+

dτ
= iaA− − i

(
c |A−|2 + dC

)
A+,

dA−
dτ

= iaA+ − i
(
c |A+|2 + dC

)
A−,

dC

dτ
= i

(
A+A− − A+A−

)
, (14)

where C is the amplitude of the mean flow correction and the coefficients c and
d are determined by the solvability conditions at O(α3) and O(εα2), respectively.
It is worth noting that the terms proportional to |A+|2 A+ and |A−|2 A− vanish.
Saturation of elliptical instability is explained by the equations above.
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3.3 Secondary instability via triad resonance

Next, we consider nonlinear evolution due to triad resonance. Once bending waves
are established, they can be regarded as perturbation which could induce another
instability (secondary instability). Kerswell [9] showed that this is indeed the case
for rapidly rotating flow without strain by numerical linear stability analysis; the
instability is most likely due to triad resonances of the Kelvin waves.
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Figure 2: Dispersion relations of Kelvin waves and triad: m = ±1, 3 and 4.

Although it is difficult to find exact resonant triads of neutral Kelvin waves, the
elliptical instability allows O(ε)-margin of wavenumber of the unstable bending
modes so that triads are exactly formed. In fig. 2 we show one of these triads:
(m; k, ω) = (1; k∗, 0), (3; k∗/2, ω0), (4; 3k∗/2, ω0), where k∗ ≈ 3.273 and
ω0 ≈ 3.32. In fact, the wavenumber of the corresponding neutral bending mode
(m = 1) is k0 ≈ 3.286. It shifts generally as k = k0 + εk1 for the elliptical flow;
the bending wave is destabilized for |k−k0| ≤ ε∆k so that we have k∗ = k0+εk1

for ε ≥ εc = |k∗ − k0|/∆k.
Let us set

u01 = A+ei(θ+k∗z) + B+ei(3θ+k∗z/2−ω0t) + C+ei(4θ+3k∗z/2−ω0t)

+ A−ei(θ−k∗z) + B−ei(3θ−k∗z/2−ω0t) + C−ei(4θ−3k∗z/2−ω0t) + c.c.

Then compatibility conditions arise at O(α2). By setting ε = α we can derive the
following set of amplitude equations

dA±
dτ

= iβ1A∓ + iβ2A± + iγ1B±C±,
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dB±
dτ

= iγ2A±C±,
dC±
dτ

= iγ3A±B±. (15)

The coefficients are evaluated by

iβ1

〈
uA+ |LuA+

〉
=

〈
uA+ |N+(1)uA−

〉 −
(

1
4

∂uA−

∂r
− i

2
vA−

)
pA+ , (16)

β2

〈
uA+ |LuA+

〉
= −k1

〈
uA+ |WuA+

〉
, (17)

iγ1

〈
uA+ |LuA+

〉
=

〈
uA+ |

{
uB+ , uC+ , 4, 3k0/2

}〉
+

〈
uA+ |

{
uC+ , uB+ ,−3,−k0/2

}〉
, (18)

iγ2

〈
uB+ |LuB+

〉
=

〈
uB+ |

{
uA+ , uC+ , 4, 3k0/2

}〉
+

〈
uB+ |

{
uC+ , uA+ ,−1,−k0

}〉
, (19)

iγ3

〈
uC+ |LuC+

〉
=

〈
uC+ |

{
uA+ , uB+ , 3, k0/2

}〉
+

〈
uC+ |

{
uB+ , uA+ , 1, k0

}〉
, (20)

where

〈uX , uY 〉 =
∫ 1

0

(uXuY + vXvY + wXwY + pXpY ) rdr,

W =




0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0


 ,

{uX , uY , m, k} = −




[
uX

d
dr

+
imvX

r
+ ikwX

]
uY − vXvY

r[
uX

d
dr

+
imvX

r
+ ikwX

]
vY +

vXuY

r[
uX

d
dr

+
imvX

r
+ ikwX

]
wY




.

An example of the evolution of the mode energies is shown in fig. 3. Initially
the energy of bending modes EA± = |A±|2 is set to large values compared to
EB± and EC±. Exponential increase of EB+ and EC+, which corresponds to
the secondary instability, is observed. The mode energy EA+ almost vanishes
and EB+ and EC+ saturate around t = 9.5; then EB+ and EC+ decrease
exponentially. In the exponential increase or decrease, the ratio of mode energies
is easily evaluated as EB+/EC+ = |γ2/γ3| ≈ 0.46, which is comparable to the
value 0.545 in Kerswell [9]. In the example the mode energies evolve periodically;
this is not expected in the actual flow, however. Conceivably, the secondary
instability would be taken over, at some stage, by a tertiary and higher instabilities
as implied by the Hamiltonian normal form [10, 11].
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Figure 3: Evolution of mode energies – Resonant triad.

4 Conclusion

The evolution of an elliptical flow is studied by weakly nonlinear analysis. Two
sets of amplitude equations are derived for different situations: the first one
can be used to estimate saturation amplitude of destabilized bending waves due
to self-induced nonlinear effect; the second one shows that triad interaction is
responsible for the secondary instability found numerically by Kerswell [9]. The
results would be useful in understanding the nonlinear evolution of elliptical flows.
Direct numerical simulation, which is planned as a future work, should assess the
applicability of the present analysis and reveal other processes important in the
fully nonlinear evolution.
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