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Abstract 

In the present work a fully developed boundary element method numerical 
scheme is presented for the simulation of compressible fluid flow in porous 
media with restriction to the subsonic flows. The flow is modeled by utilizing the 

is important to satisfy the non-slip boundary condition on impermeable surfaces 
that bound the porous media domain. The governing equations are transformed 
by using the velocity–vorticity variables formulation and therefore the 
computation scheme is partitioned into kinematic and kinetic part. The method is 
applied to consider buoyancy driven flow in closed porous cavity, differentially 
heated under large temperature gradients. The results in terms of velocity and 
temperature redistribution as well as the total heat transfer across the cavity will 
be presented for different governing parameters. 
Keywords:  porous media, compressible fluid flow, boundary domain integral 
method, boundary element method, natural convection. 

1 Introduction 

Most of the studies dealing with transport phenomena in porous media are based 
on presuming the fluid is incompressible and viscous, where the mass density is 
a constant quantity the velocity does not depend on the mass density and 
pressure is simply a force in the linear momentum balance equation. In this 
work, the boundary element method, which has been established for the viscous 
incompressible fluid motion [1], is modified and extended to capture the 
compressible fluid state with restriction to the subsonic flows. That means that 
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the difference in mass density significantly changes the velocity field but there 
are no shock waves and no sudden sharp changes in the values of the field 
functions. Furthermore the pressure is a thermodynamic quantity which is 
temperature and mass density dependent. 

2 Mathematical formulation 

The present work is concerned with natural convection in a two-dimensional, 
rectangular enclosure with the vertical walls held at different temperatures and 
the connecting horizontal walls considered adiabatic. The enclosure is filled with 
porous material, which is homogeneous and isotropic, and the fluid that saturates 
the solid matrix and both are in local thermodynamic equilibrium. The flow is 
assumed to be steady, laminar, and compressible. The general set of equations 
for conservation of mass, momentum and energy are based on the Brinkman 
extended Darcy flow model. The equations governing the conservation of mass, 
momentum and energy can be written as follows [2] 
 

0=
∂

∂
+

∂
∂

j

j

x
v

t
ρρφ , (1)

 

( )

2

2

ˆ ,

i i i
j i

j j j j

j
j

i j

v v p vv g
t x x x x

v
v

x x K

ρ φ φ ρ µ
φ

µφµ µ

  ∂ ∂ ∂ ∂
+ = − + −  ∂ ∂ ∂ ∂ ∂  

∂
+ + −

∂ ∂

 (2)

 

( ) ( )( )[ ] ( )
j

e
j

j
fp

j
spfp x

T
x

T
v

c
x

Tcc
t ∂

∂
∂
∂

=







∂
∂

+−+
∂
∂ λ

φ
ρφρφρφ 1 . (3)

 

The parameters, used above are: iv  volume-averaged velocity, ix  the i-th 
coordinate, φ  porosity, t time, ρ  density, µ  dinamic viscosity, jxp ∂∂  the 
pressure gradient, ig  gravity, K permeability of porous media, µ̂ coefficient of 
bulk viscosity, T is temperature, eλ  the effective thermal conductivity of the 
porous media given as (1 )e f sλ φλ φ λ= + − , where fλ  and sλ  are thermal 
conductivities for the fluid and solid phases, respectively. Furthermore ( )p fcρ  
and ( )p scρ  represent heat capacity for the fluid and solid phases. Introducing 
new variables φρρ =′  and φjj vv =′ , and with the definition of Stokes 
material derivative of the variable ( )⋅  as ( ) ( ) ( ) kk xvttDD ∂⋅∂+∂⋅∂=⋅ , 
continuity equation can be written as 
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where D′ represent a local expansion rate. According to Stokes hypothesis the 
second viscous coefficient can be taken as µµ 32ˆ −= . Because of analytical 
reasons to develop velocity–vorticity formulation of governing equations, the 
momentum eq. (2) is worth writing in its extended form [3, 4] 
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with the introduction of the vorticity vector ω , representing the curl of the 
velocity vector,  
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and having in mind that in our case the original vorticity is replaced by the so-
called compressible vorticity ω′ , ( )ωφω 1=′ . It is important to stress out that 
porosity φ  is taken to be constant over individual subdomain but changeable in 
respect to the whole computational domain. 
     Representing the material properties as a sum of a constant and variable part 
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then the momentum and energy equations (3) and (5) can be written as 
 

j
m

ii
jj

k
ijk

i v
K

fg
x
p

x
e

tD
vD ′−++

∂
∂

−
∂

′∂
−=

′

0000

0 11
ρ
φµ

ρρ
ρ

ρ
ωµ , (8)

  

0

2

c
S

xx
Ta

tD
TD m

T

jj

+
∂∂

∂
= , (9)

 
where a  is thermal diffusivity, and the pseudo body force m

if  and pseudo heat 

source m
TS  terms include the effects of variable material properties, given by 
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3 Numerical method  

The numerical method chosen for this investigation is the Boundary Domain 
Integral Method based on the classical Boundary Element Method.  
     The kinematic is given by velocity vector Poisson’s equation 
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representing the mass conservation equation (1) and the vorticity definition (6), 
expressing the compatibility and restriction conditions between velocity, 
vorticity, and mass density field functions.  To accelerate the convergence and 
the stability of the coupled velocity, vorticity and pressure computational 
iterative scheme, the false transient approach may be used for equation (12) [5]. 
By adding the artificial accumulation term it can be written in its parabolic 
diffusion form 
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where α  is the relaxation parameter controlling the diffusion and accumulation 
processes. It is obvious that the governing velocity equation (12) is exactly 
satisfied only at the steady state of the artificial transient ( ∞→t ), when the 
false time derivative vanishes. For the two-dimensional plane flow the vorticity 
vector has just one component perpendicular to the plane of the flow, 
e.g. (0, 0, )kω ω′ ′= , therefore the equation (13) reduces to 
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The vorticity kinetics is given by the vorticity transport equation obtained as a 
curl of the momentum equation (8) in the form 
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The vorticity transport equation (15) is a highly nonlinear partial differential 
equation due to the products of velocity and vorticity having in mind that the 
velocity is kinematically dependent on vorticity. For the two-dimensional plane 
flow equation (15) is reduced to a scalar equation for vorticity ω′  
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reducing also the pseudo body force term m

if  to 
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Due to the buoyancy force and variable material property terms, acting as 
additional temperature and pressure dependent vorticity source terms, the 
vorticity transport equation is coupled to the energy and pressure equations, 
making the numerical procedure very severe.  
     In the compressible fluid dynamics the pressure is a thermodynamic quantity 
which is temperature and mass density dependent. Writing the momentum 
equation (8) for the pressure gradient we have  
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To derive the pressure equation, depending on known field and material 
functions, the divergence of equation (18) should be calculated, resulting in the 
elliptic Poisson pressure equation 
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As above with velocity vector equation, the false pressure transient term may be 
added to obtain false parabolic diffusion equation 
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Equations (9), (14), (16) and (20) represent the leading non-linear set of 
equations to which the weighted residuals technique of the BDIM has to be 
applied [6]. Each of these equations can be written as in the following general 
differential conservation equation 
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where the linear differential operator [ ]uℵ  will be parabolic diffusion 
differential operator of the form 
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with ia  equal to: α  for kinematics and pressure, 0ν  and 00e0 ca λ=  for 
vorticity and temperature kinetics, respectively. 
     As the computational results of the present work are limited to the two-
dimensional case, all the subsequent integral equations will consequently be 
written for the case of planar geometry only. Integral representation of the 
kinematic equation is given with the following equation 
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The vorticity transport equation is given with the integral representation 
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     Applying similar procedure to the heat transport equation (9), we have 
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Finally, the pressure equation may be rewritten in the following integral 
statement 
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     In all integral equations the constant variation of field functions ( )p,T,,vi ω  
is assumed within the individual time increment 1FF ttt −−=∆ , therefore the 
time integrals may be evaluated analytically,  
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Also in all equations *u  is the parabolic diffusion fundamental solution in the 
form 
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where the proper use of ia  is as expressed above and r  is the magnitude of the 
vector from the source point to reference point. Final integral representation for 
velocity, vorticity, temperature and pressure are therefore given by the following 
equations 
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where nv′ , tg  and m

tf  are the normal velocity, tangential gravity and nonlinear 
material source components, respectively. 
     For the numerical approximate solution of the field functions, the integral 
equations are further written in a discretized manner in which the integrals over 
the boundary Γ  and domain Ω  are approximated by a sum of the integrals over 
all boundary elements and over all internal cells. In such a way we obtain the 
matrix form of the equations, which are solved by coupling kinetic and kinematic 
equations, considering the corresponding boundary and initial conditions. Since 
the implicit set of equations is written simultaneously for all boundary and 
internal nodes, these procedure results in a very large fully populated system 
matrix influenced by diffusion and convection. The consequence of this 
approach is a very stable and accurate numerical scheme with substantial 
computer time and memory demands. To improve the economics of the 
computation, the subdomain technique is used, where the entire solution domain 
is partitioned into subdomains to which the same described numerical procedure 
can be applied [6]. The final system of equations for the entire domain is then 
obtained by adding the sets of equations for each subdomain considering the 
compatibility and equilibrium conditions between their interfaces, resulting in a 
much sparse system matrix suitable to solve with iterative techniques. 

4 Conclusion 

The boundary element integral approach to the solution of compressible fluid 
motion in thermally driven porous cavity is presented. The derived numerical 
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model is characterized by the decomposition of flow into its kinematics and 
kinetics, a result of the velocity–vorticity formulation of the modified (porous) 
Navier-Stokes equation for a compressible fluid. The described numerical 
algorithm leads to strong coupling between velocity, vorticity and mass density 
fields, resulting in a stable numerical scheme. The application of the parabolic 
diffusion fundamental solution in the derivation of final integral representations 
ensures an accurate computation of the flow field variables. A numerical model 
based on the presented theoretical work is, at this moment, in the phase of 
evaluation and testing, therefore the results of test examples should be presented 
at the conference.  
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