
Simulation of wave propagation in flexible hoses

R. Etlender1, U. Iben1 & M. Bischoff2
1 Robert Bosch GmbH, Department CR/ARH, Stuttgart, Germany
2 University of Stuttgart, Institute of Structural Mechanics,
Stuttgart, Germany

Abstract

A fluid-structure interaction model is presented for transient flow in flexible hoses.
The wall shear stress is included. The governing equations for the fluid flow are
discretized by a finite-volume method. The wall is considered as a thin structure
consisting of shells and is discretized by a finite element method. The coupling of
the solvers is applied iteratively-staged.

structure interaction, Godunov method, cavitation.

1 Introduction

The development of complex hydraulic systems, such as fuel injection systems,
requires efficient simulation models to analyze system properties. Wave
propagations in flexible hoses have a significant influence on both the transient
mass flow rate over specific parts and the overall system behavior. Due to the
restriction of computational time, quasi one-dimensional models have to be used
for system simulations.

In industrial applications flexible hoses are not only used due to their low cost
but also to damp pressure oscillations. To simulate the overall system behavior,
the common frequency analysis based on linear transfer matrices can not be used.
This is due to the following facts: firstly, the occurring pressure waves have high
amplitudes, therefore linear transfer properties are not valid anymore. Secondly,
the simulation tools applied in the development process use time based algorithms
instead of frequency domain. Thus to simulate the fluid structure interaction in the
hoses, algorithms using a compressible flow solver and a solver for the structure
of the flexible pipes have to be developed.
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In the presented work compressible fluid flow is considered as quasi one-
dimensional flow with constant entropy. The conservation of mass and momentum,
including a weak variable cross sectional pipe area A, are considered. The
higher order terms (viscous terms) of the Navier-Stokes equation are replaced
by approximations derived from semi-empirical models. In order to secure the
conservation properties a finite volume scheme for Aρ and Aρv is developed.
Cavitation induced by pressure waves in the pipes can be handled due to the fully
conservative approach. The wall is considered as a thin structure and methods
from finite-element analysis of shells are used for the discretization. To increase
the efficiency of the numerical method the dimension of the wave equation for
the wall motion is reduced by a degeneration approach. The complete numerical
model consists of a combination of a fluid and a structure solver in each time step
guaranteeing the conservation properties of the flow equations.

The fluid-structure-model, the numerical method and results are presented with
emphasis on the analysis of wave propagation for different hydraulic boundary
conditions.

2 Physical model

Let us consider an infinitesimal section of the hose with interior cross-section
area A = A(x, t). It is filled with compressible fluid with density ρ. The cross-
section average velocity is denoted by v(x, t) and the pressure by p(x, t). x and
t mark the co-ordinate along the pipe and the time respectively. Furthermore, let
τW = τW (x, t) denote the wall shear stress of the hose in the given section. The
entropy of the fluid is considered to be constant, so that the energy equation can be
neglected. Furthermore, the fluid flow is considered isothermal, so that the density
is a function of the pressure and the temperature of the fluid at the beginning of
the simulation only, i.e. ρ = ρ(p, T0). This assumption is legitimate for flexible
hoses, as they neither are used in high-pressure region, nor subject to greater and
fast temperature fluctuations.
Regard conservation of mass for the pipe section and assume ρ, v and A to be
smooth in time and space. The continuity equation of a fluid flow in the hose can
be specified:

∂

∂t
(Aρ) +

∂

∂x
(Aρv) = 0. (1)

Regarding conservation of momentum with the same restrictions, the equation of
motion for one-dimensional flow can be specified:

∂

∂t
(Aρv) +

∂

∂x
(Aρv2) + A

∂

∂x
p = AτW . (2)

To make the system of equations complete, a state equation p = p(ρ, T0) and an
equation for the wall motion are needed. The recent shows the interrelationship
between the forces acting on the wall and the changing of the cross-section area.
It can be either a simple dependence of A on p or any more complex model up
to multidimensional wave equation. The efficient modeling of the wall, as well as
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its numerical handling and the effects on the coupling algorithm, will be discussed
later. Assuming a presence of the missing equation and a method for its numerical
handling, a conservative numerical scheme for discretization of the fluid equation
along with a coupling scheme is targeted in this work first.

As the form of the continuous equations is essential for the conservation
properties of its discrete versions, consider two slightly recasted formulations
of the system of equations before constructing a finite-volume-scheme. Using
differentiation by parts technique following equivalent formulations can be
generated:

∂
∂t (ρ) + ∂

∂x (ρv) = − ρ
A

(
∂
∂tA + v ∂

∂xA
)

∂
∂t (ρv) + ∂

∂x (ρv2 + p) = − ρv
A

(
∂
∂tA + v ∂

∂xA
)

+ AτM

(3)

and

∂
∂t (Aρ) + ∂

∂x(Aρv) = 0

∂
∂t (Aρv) + ∂

∂x(Aρv2 + p) = p ∂
∂xA + AτM .

(4)

The different formulations of the conservation laws represent different views
of the consequence of wall motions for the fluid states. The variables Aρ and
Aρv are observed as conservative in the equation (4). The equation (3) treats the
density ρ and the momentum ρv as conservative variables (like the equations for
one-dimensional flows in inelastic pipes) and considers the wall motion as source
therms.

To construct a model for τM some known semi-empirical models for the friction
in inelastic pipes can be used. Appearing constants of the models have to be
validated by experiments.

Invoking Brunone et al. [5] the wall shear stress can be written in following
form:

τM = −f

2
ρv2 +

k

4
ρA

(
∂

∂t
v − c

∂

∂x
v

)
(5)

where f is the steady-state coefficient (Darcy-Weisbach friction factor), k the
unsteady friction coefficient and c the water hammer wave velocity. The authors
specify k as a function of the Reynolds number Re. A similar model was provided
by Axworthy et al. [1]. For the wall shear stress they deduced:

τM = −f

2
ρv2 +

k̃

4
ρA

(
∂

∂t
v + v

∂

∂x
v

)
(6)

where, unlike the previous model, k̃ is a time and space dependent coefficient
which represents the frequency.
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A substantially different approach was provided by Zielke [11]. It is based on
frequency-dependent friction analysis and supplies the following formula for the
wall shear stress:

τM = −4ν

r
ρv +

2ν

r

t∫
0

Wd(t − t̃)
∂(ρv)

∂t̃
dt̃ (7)

where Wd are some weight functions, with which the bygone values of flow rate
variation are appraised according to their meaning to the present pressure loss in
the pipe section. Note, that due to the advanced approach by Theissen [9], it is
possible to eliminate the imperative integration over the whole past simulation
time (t0, tnow) and to construct an efficient numerical method for friction
calculations. This makes Zielke’s model especially attractive for quasi one-
dimensional calculations. Detailed analysis of this particular friction model is
omitted here, for further information, see [9, 11].

3 Discretization of conservation equations

As our main objective is to guarantee the conservation properties of the discrete
numerical scheme for a full time step involving a solver for the fluid states, a
solver for the structure states and its coupling, a finite-volume-scheme for the fluid
equations is constructed, following Godunov’s idea. It is tempting to start with
the formulation (3), use the common Godunov-methods (for inelastic pipes) to
approach the left side and apply the right side to the discrete scheme by using
the source-splitting technique. However, considering the hose to be divided in N
finite sections, i.e. ∆x = xi+1 − xi, xi+ 1

2
= xi + ∆x

2 . The time is discretized

according to CFL-condition with ∆t = tn+1 − tn, tn+ 1
2 = tn + ∆t

2 . The mass
and the momentum conservations can only be provided in this case by ensuring
the sum over all source terms to be 0 at every time step [tn, tn+1]:

N∑
i=1

[
ρ

A

(
∂

∂t
A + v

∂

∂x
A

)]n+ 1
2

i

= 0,
N∑

i=1

[
ρv

A

(
∂

∂t
A + v

∂

∂x
A

)]n+ 1
2

i

= 0,

(8)

where [·]ni denotes a term evaluated at the point i and at time n. Neither solving
of a wave equation, nor using simple models for the computing of cross-section
variations enforce a priori balancing of sources, which are caused by prolongations
and constrictions of the pipe. An analysis of the balancing of the source terms is
omitted here, as it often tends to produce instabilities in the coupling algorithm
and as the construction of a conservative discrete equation starting with (4) is
straightforward.

Integrating the equation (4) over a finite cell [xi− 1
2
, xi+ 1

2
] and over a time slice

[tn, tn+1], using the trapezoidal rule to approach
∫ ∫

p ∂
∂xA dxdt and the midpoint

rule to approach every other integral, the following discrete scheme for a finite
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time step can be generated:

An+1
i ρn+1

i = An
i ρn

i + ∆t
∆x

(
A

n+1
2

i− 1
2

[ρv]
n+ 1

2
i− 1

2
− A

n+1
2

i+ 1
2

[ρv]
n+1

2
i+ 1

2

)

An+1
i [ρv]n+1

i = An
i [ρv]ni + ∆t

∆x

(
A

n+1
2

i− 1
2

[ρv2 + p]
n+1

2
i− 1

2
− A

n+1
2

i+ 1
2

[ρv2 + p]
n+ 1

2
i+ 1

2

)

+ ∆t
2·∆x

(
p

n+1
2

i+ 1
2

(
A

n+1
2

i+1 − A
n+1

2
i

)
+ p

n+1
2

i− 1
2

(
A

n+1
2

i − A
n+1

2
i−1

))

+∆t [AτM ]
n+1

2
i . (9)

For approximation of the fluid state values on cell boundaries at half a time
step, reconstruction-evaluation technique can be applied along with an appropriate
Riemann-solver. (c.f. [7, 10]). Construction of the cross-section values depends on
the model used for the pipe wall simulation.

4 Simulation of the pipe wall motion

The simplest and calculation-friendliest way to cover the cross-section variation
in the simulation is to assume that the current prolongation depends only on the
current pressure within the pipe. This view presumes the wall to be massless and
to have no self-induced motion. Though this approximation is only inaccurate, the
model is a good sample for studying the properties of the finite-volume scheme
(for the flow equations) and the coupling algorithm, as it allows the cross-section
area to be unsteady in time and space and tends much more than the others to
cause instabilities in the complete algorithm. In fact, it presents the limit behavior
of most complex models.

Let R denote the interior radius of the pipe, E the Young’s bulk modulus of the
wall material, µ the contraction rate of the wall, sW the section thickness and w the
wall displacement in the radial direction. This simple model induces the formula

w =
R2(1 − µ2)

sW · E · p (10)

for a hose with clamped ends. Some more detailed models can be constructed
by assuming the wall to be a thin structure and treating a wall section as
being consisted on shell elements. According to the shell theory, the motion
can be described by parameterizing shells and ”degenerating” a multidimensional
equation to a system of one-dimensional equations: assuming that a single shell has
M degrees of freedom, one shell can be represented by M variables. As the shells
are tangent to each other in only one dimension, one obtains M one-dimensional
equations to describe the wall motion. Figure 1 illustrates some multi-parameter
models for a hose wall section.

Let us focus on M = 2 element. This is the simplest model, which considers
the longitudinal and transversal vibrations of the hose wall and is one, which does
not require practical analysis of the interplay of the composites of the wall. This
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M = 1 M = 2 M = 4 M = 8

Figure 1: Possible parameterizations of a hose wall shell.

model requires only the knowledge of the “average” Young’s modulus in radial and
in axial directions (let Eφ and Ex denote these values), of the “average” density of
the wall material (ρW ) and of the “average” contraction rates (µφ, µx). Let radial
and axial displacements, denoted by w, u respectively, be the shell describing
parameters (taking this two of all results in a vivid wave equation), with the upper
notations for fluid states one obtains:




∂2

∂x2
u + C1

∂

∂x
w − C2

∂2

∂t2
u = F1(t, x)

C3w +
∂

∂x
u + C4

∂2

∂t2
w = F2(t, x).

(11)

with

C1 :=
µφ
R , C2 :=

ρM (1−µφµx)
E , F1(t, x) := ρτW ,

C3 := 1
Rµx

, C4 :=
ρM (1−µφµx)

Eµx
, F2(t, x) :=

R(1−µφµx)
sEµx

· p(t, x) .

5 Fluid-structure coupling scheme

For constructing a complete scheme for execution of a time step a coupling scheme
is needed. As the fluid solver requires structure data from the end of the current
time step and the structure solver requires fluid states from the end of the current
step, it is impossible to use the parallel-coupling technique. Instead, iterative-
staged algorithm has to be constructed. The chosen start for the iteration is the
following: The fluid equations for fixed structure (for current time step) are solved
as a predictor. The adapting of structure is done in the next step. This procedure is
the starting point of the iteration fluid → structure → fluid → structure →... which
calculates improving approximations for the values at the end of the time step. The
iteration is determined when the greatest change in the pressure values, created by
one iteration round, is smaller than a (user-defined) accuracy bound. The next time
step can be applied. To ensure the convergence of this iteration, a relaxation is
required. Instead of using the new approximations for the wall, the combination
of the old structure values and the currently approximated ones, weighted with the
relaxation factor α and (1−α) respectively, is provided to the fluid solver in every
step. For the information on finding the optimal relaxation factor [8] is referred.
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6 Numerical results

The scheme was implemented in C and integrated in a commercial hydraulic
system simulation tool. The following calculations were done on a Pentium 3,
3GHz machine. The simulated time was 10 ms and the simulations took between
10 and 15 s.

One important factor in wave propagation simulation is handling the pressure
shocks. To present the consequence of wall flexibility on shocks, the behavior of
a connection between two tanks with different pressures (10 bar and 12 bar) after
opening the separating valve is discussed. (c.f. Figure 2)
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Figure 2: Test configuration.

Let us imagine the following setup: the hose has the length l = 0.5m, the
interior diameter d = 0.003m, the contraction number µ = 0.45 and the wall
thickness sw = 0.002m. We compare a hose with Young’s modulus Ex = Eφ =
5 · 108N/m2 with one with Ex = Eφ = 5 · 109N/m2 and with an inelastic pipe.
For the calculation the frequency-dependent friction model was used along with
the M = 2 model for the wall motion calculation. Figure 3 shows the pressure at
the midpoint of the hoses and the pipe and Figure 4 flow rates at the valve.

Figure 3: Pressure at the midpoint of the pipeline.

Both diagrams show, that rising flexibility causes rising delays in propagation
of shocks. Furthermore, both hoses show stronger damping properties than the
inelastic pipe.

The effect of using different models for the wall motion are shown in Figure 5.
Note a basic problem of the hose modeling: wall flexibility causes strong changes
on the propagation speed. Small errors in modeling cause therefore bigger
discrepancies with progressing time.
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Figure 4: Flow rate at the valve.

Figure 5: Pressure at the midpoint of the pipeline.

Let us also take a look at cavitation handling by the scheme. Barotrop model is
used to describe cavitation, c.f. [2]. Imagine the west tank to be vacuumed in the
same setup as before. Figure 6 shows the pressure, observed at the midpoints of
the pipelines. The solution stays stable and again the same damping properties can
be noticed.

Figure 6: Pressure at the midpoint for a vacuumed west tank.

7 Conclusions

This paper sketches a method for efficient computation of wave propagation
in hydraulic hoses for using it as a sub-model for simulation of complex
hydraulic systems. The wall flexibility is included and the conservation properties
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are fulfilled in the discrete scheme. Due to using a finite-volume scheme for
calculating fluid states, the algorithm has shown no problems with handling
cavitation. Any new constructed model for the wall motion can be easily integrated
in the complete scheme.

We would like to thank our colleagues A. Berg and M. Jungemann for fruitful
discussions and hints.
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