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Abstract 

The effects of the surrounding water on the dynamic response of flexible, free 
standing, cylinders fixed at their base, is studied using linear diffraction theory 
and two different solution approaches. The first one uses a consistent 
transmitting boundary to reproduce the water, while the second expresses 
analytically the solution in terms of the natural modes of vibration of the water 
and of the structure. This approach, used first by Liaw and Chopra (Report 
EERC 73-25, University of California, 1973) proves to be very efficient and 
accurate. Results are presented in terms of change in the effective natural period 
of the cylinder due to the presence of the water, and the effective damping, 
considering both an incompressible and a compressible fluid. The same 
formulation is used next to determine the dynamic response of these cylinders to 
wave action. The results (base shear and overturning moment) for the flexible 
cylinders are compared to those that would be obtained assuming a rigid cylinder 
(only diffraction forces). 
Keywords:  hydrodynamics, diffraction forces, flexible cylinders. 

1 Introduction 

The dynamic response of a flexible vertical cylinder fixed at its base and 
surrounded by water has been a problem of interest in relation to the design of 
some harbor structures subjected to wave action, impact forces or earthquake 
excitation. It was investigated in this work considering the cylinder subjected to 
a harmonic force applied at its top and under the action of waves. Solutions were 
obtained for both an incompressible and a compressible fluid, using linear 
diffraction theory and the equivalent of Morison’s equation and comparing the 
numerical predictions. In the former case two different formulations were used 
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and implemented in computer programs. The first one was similar to that 
proposed by Liaw and Chopra [1] for the seismic analysis of cylindrical towers 
in water. It is based on an expansion of the solution for the structural response in 
terms of its modes of vibration in air, and an expansion of the hydrodynamic 
forces in terms of the modes of the water. It has the advantage that it allows to 
take a different number of modes for each of the two components (structure and 
water).The second formulation was based on a finite element discretization of the 
cylinder and a semi-discrete, finite element type model of the water in terms of a 
consistent boundary matrix as used by Syriopoulou [2] and Hsu [3]. This 
formulation is analogous to that used by Blaney et al [4] for the dynamic analysis 
of a pile embedded in soil using the consistent soil boundary matrix developed 
by Kausel and Roesset [5] in cylindrical coordinates. The results of both 
formulations were essentially identical using ten modes for the water and 3 for 
the structure with the first one, and ten elements for the second, but the first 
approach was found to be much more economical. As a result it was the one used 
for an extensive series of parametric studies. The details of the formulation can 
be found in Anbiah [6]. In this paper we shall concentrate, due to space 
limitations, on the discussion of the results of the study. 

2 Vibrating cylinder under harmonic force at top 

A simple approximation to study this case is the use of Morison’s equation with 
the water particle velocities and accelerations equal to those of the structure and 
a linearized drag term. The inertia and drag coefficients Cm and Cd are obtained 
from the consideration of a circular disk vibrating in a compressible or 
incompressible medium (plane problem). For a steady state harmonic excitation 
and response the equation of motion in the frequency domain becomes then  
 

 E I yiv -ω2 (m + Cm ρ π R2) y +Cd ρ R δy/δt = P δ (L)       (1) 
 

where E is the modulus of elasticity of the cylinder, I its cross sectional moment 
of inertia, R its radius, L its length, and m its mass per unit length. P is the 
amplitude of the applied force, ω the frequency of vibration, y the transverse 
displacement, δy/δt the velocity, and the coefficients Cm Cd are given by 
 

                  Cm = - S1(a0)        Cd = π ω R S2(a0)                           (2) 
with 

                        a0 = ω R / cw                                                    (3) 
 

a0 is a dimensionless frequency, cw is the wave propagation velocity in water, of 
the order of 1500 m/s, and S1(a0) S2(a0) are the real and imaginary parts of H1 
(a0) /( a0 H' (a0) ). H1 (a0) is the Hankel function of the first order and second kind 
(that decays as a0 tends to infinity) and H' (a0) is its first derivative. 
     Under these assumptions calling ωi the ith natural frequency of the cylinder in 
air, Ωi the corresponding frequency in water and Dei the effective damping at the 
ith frequency one would have for compressible water  

           ( Ωi / ωi  )2 = 1 / (1 - RR* S1(a0) )                                 (4) 
         

                             Dei = 0.5 ( Ωi / ωi  )2 RR* S2(a0)                                  (5) 
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where RR is the ratio of the effective density of the cylinder (its mass per unit 
length divided by the total cross sectional area π R2 ) and the density of the water.  
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Figure 1: Variation of the effective natural period with ω1
2 R/g for different 

values of R/d. 
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     Considering instead the exact diffraction theory solution for the flexible 
cylinder in water the change in the natural frequency and the effective damping 
will be functions not only of the dimensionless frequency a0 and of the density 
ratio RR, but also of the slenderness ratio d/R (where d is the water depth) and of 
the factor ω2 R/g where g is the acceleration of gravity. 
 

 
 

 
 

 

Figure 2: Variation of the effective damping with ω1
2 R/g for different values 

of R/d – Incompressible fluid. 
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     Figure 1 shows the variation of the ratio Ω1 / ω1 as a function of ω1
2 R/g for 

different values of the density ratio and slenderness ratios of 0.01, 0.05, 0.25 and 
considering incompressible water. The corresponding results for a compressible 
fluid with values of ω1 R/cw ranging from 0.1 to 1 are nearly identical. It can be 
observed that as the value of R/d increases, with decreasing slenderness ratio, the 
change in the natural frequency becomes more dependent on the value of ω1

2 R/g 
particularly for low values of this factor. 
 

 

 

 
Figure 3: Variation of the effective damping with ω12 R/g for R/d = 0.01 and 

ω1R/cw = 0.1, 0.25 and 0.5. 
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     Figure 2 shows the effective damping at the first natural frequency for an 
incompressible fluid as a function of ω1

2 R/g for different values of R/d. The 
effective damping increases in all cases as the density ratio RR decreases. 
It increases initially with increasing ω1

2 R/g reaching a peak at a value of this 
factor varying approximately from 1 to 4 depending on the density ratio. 
It decreases then steadily for larger values of the factor. The peak values for 
RR = 0.25 are of the order of 3 % for R/d = 0.01, 13 % for R/d = 0.05, 45 % for 
R/d = 0.25, and 55 % for R/d = 1. There are therefore ranges of values of ω1

2 R/g 
for which the effective damping could become significant, particularly for small 
slenderness ratios. For values of R/d of 0.25 or larger the effect of the 
compressibility of the water on the effective damping at the fundamental 
frequency is again negligible. On the other hand for small values of R/d there is a 
significant change in the variation of the damping with ω1

2 R/g as the factor ω1 
R/cw increases. The change is particularly significant for the higher values of the 
density ratio (of the order of 1) as shown in Figure 3 for R/d = 0.01. The results 
for R/d = 0.05 exhibit a similar trend but the changes are less dramatic. 

3 Flexible cylinder under wave action 

To assess the effect of the flexibility of the structure on the hydrodynamic forces 
and the dynamic response to wave action four hypothetical cylinders were 
selected ranging from a very flexible one in deep water to a very stiff one in 
shallow water. The results for all cases were the base shear divided by ρ G R2 h 
where h is the wave height, the overturning moment at the base divided by ρ G 
R2 h d, where d is the water depth and the top lateral displacement divided by the 
wave height. All three quantities are plotted versus ω2 R/g. For the base shear 
and the overturning moment the results for the flexible cylinder are plotted 
versus the corresponding results for a rigid cylinder. Because of the 
normalization the relation between wave height and frequency is ignored in these 
figures. To get a more clear definition of the actual forces as a function of 
frequency one would have to select a functional relationship between the wave 
height and its frequency. For the rigid cylinder the displacement would be zero. 
     Figure 4 shows the results for the very flexible cylinder. The ratio R/d is 0.01, 
the natural frequency in air is 1 rad/s, RR = 1.5, ω1 R/cw = 0.0004 and 
ω1

2 R/g = 0.06. All three quantities (base shear, overturning moment and 
displacement) show clearly two peaks associated with the first two natural 
frequencies of the cylinder in water. The forces at these frequencies are greatly 
amplified while there is an intermediate range of frequencies over which de-
amplification occurs with forces smaller than those that would take place for a 
rigid cylinder. 
     Figure 5 shows the corresponding results for the second cylinder with 
R/d = 0.05 and values of the other parameters of 2 rad/s, 1.5, 0.01 and 3 
respectively. There are acain two peaks but now the first one is associated with 
the variation of the hydrodynamic forces on a rigid cylinder, while the second 
corresponds to the first natural frequency of the cylinder in water. The results for 
the third cylinder with R/d = 0.1, a natural frequency in air of 4.4 rad/s, a density 
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ratio of 0.75 and values of the other 2 parameters equal to 0.05 and 30 
respectively were very similar with the second peak, corresponding to the natural 
frequency of the cylinder in water appearing at a higher frequency and with a 
smaller amplitude, as could be expected. The fourth cylinder had a value of 
R/d = 0.25, a natural frequency in air of 22 rad/s, and a density ratio of 0.75. The 
forces for this case were essentially the same as for a rigid cylinder. The shape of 
the displacement curve was essentially the same as that of the forces with a peak 
amplitude of under h/1000. 

 

 

 
Figure 4: Base shear, overturning moment and top displacement for flexible 

cylinder (cylinder 1). 
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Figure 5: Base shear, overturning moment and top displacement for 
intermediate cylinder (cylinder 2). 

4 Conclusions 

The results of the study are as follows. 
 

• The use of a Morison’s equation type solution produced very reasonable 
results for the very flexible cylinders with small values of R/d (large 
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slenderness ratios) but could introduce significant errors for stiffer 
cylinders with larger R/d ratios. 

• The effect of the compressibility of the water was generally negligible 
except for the effective damping of cylinders with small values of R/d 
and density ratios of the order of unity. 

• The flexibility of the cylinder can affect significantly its dynamic 
response to waves. 
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