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Abstract

The effect of the motion of a submerged sphere on the horizontal drift force
is investigated analytically. The multipole expansion method is used to derive
analytical solutions for the diffraction and radiation velocity potentials in a series
of associated Legendre functions. The second-order steady force is obtained by
the far field method. The effect of all velocity potentials is taken into account
in derivation of the horizontal drift force. The total contribution of the radiation
velocity potential is minimal to the horizontal drift force if the center of mass is
at a distance less than twenty percent of the radius from the center of the sphere.
The effect of the radiation velocity potential in vicinity of the resonant frequency
is augmented and may create a relatively large horizontal drift force.
Keywords: drift forces, radiation, diffraction, multipole expansion.

1 Introduction

Marine structures are usually designed to operate in a wave environment.
Structural loading of the body surface under the water and unsteady motions of
the body are two of the principal resulting problems. When the characteristic
body dimension is comparable to the wave length, the potential effects dominate.
The presence of the body alters the pattern of wave propagation in the vicinity of
the structure and causes wave scattering. The body may also oscillate and cause the
radiation of waves if the constraints are not sufficiently rigid. As a consequence,
the body experiences reacting forces from the surrounding fluid and constraints.
Due to the complexity of the associated boundary value problems with the wave-
body interactions in the frame of the potential flow theory, analytical solutions
can be obtained for a few special geometries. In general, a numerical solution of
Laplace’s equation along with the associated boundary conditions is imperative.
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The objective of this research paper is to obtain an analytical bench mark solution
for the effect of the radiation velocity potential on the second-order horizontal drift
force acting upon a submerged sphere in infinite fluid depth.

The problem of scattering of a surface wave by a fully submerged, rigid and
stationary sphere was discussed by Gray [1]. Using the general solution of the
Laplace equation in spherical coordinates, Gray [1] expressed the diffraction
potential in a series solution of associated Legendre functions with unknown
coefficients. Srokosz [4], in his study on a submerged sphere as an absorber of
wave power, applied the multipole potentials derived by Thorne [5] to obtain the
non-dimensional parameters of the surge and heave radiation problems. Wang [6]
expressed the velocity potentials as a summation of a wave source at the center of
a sphere with an infinite series of wave free potentials to discuss the free motions
of a spherical submarine in infinite depth. Wu et al. [7] presented a solution for the
drift forces along with the analysis of the exciting forces acting on a submerged
sphere in finite water depth using the multipole expansion method. They applied
both the far field and near field methods to obtain the drift forces. They only
considered the contribution of the diffraction problem velocity potentials to the
drift force. Rahman [3] studied the fields of the hydrodynamic diffraction pressure
and fluid velocity around a submerged sphere in finite depth. He used the multipole
expansion method to obtain the fluid velocity potential.

An analytical solution is obtained for the first-order problems and the
horizontal drift force of a sphere in time-harmonic waves in fluid of infinite
depth. The multipole expansion method is used to derive analytical solutions
for the diffraction and radiation velocity potentials in a series of associated
Legendre functions. The associated hydrodynamic coefficients are obtained, and
the response amplitude operators of the surge, heave and pitch motions are
computed, taking into account the effect of the position of the center of mass.
The second-order steady force is obtained by the far field method. The effect of all
velocity potentials is taken into account in derivation of the horizontal drift force.
The results of the computations are presented in tabular form to provide a very
precise benchmark solution to validate the numerical schemes.

2 Formulation of the problem

Two sets of coordinate systems are considered. One is a right-handed Cartesian
coordinate system (x, y, z) fixed in the fluid with oz opposing the direction of
gravity and o − xy lying in the undisturbed free surface. The other set is the
spherical coordinate system (r, θ, ψ) with the origin at the center of the sphere,
as shown in Fig. 1.

It is considered that the amplitudes of both the incident wave and the motion
of the sphere are small. Therefore, the usage of linearized potential theory is
justified and the whole fluid flow can be characterized by a scalar function called
the velocity potential. The symmetrical geometry of the sphere indicates that there
are only three modes of motion responding to a disturbance in any given direction.
These are the surge, heave and pitch motions, as the incident wave propagates
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Figure 1: The sphere geometry and the coordinates definition.

along the x-axis. The hydrodynamic reactions in pitch motion vanish due to the
symmetrical geometry of the sphere.

The total potential can be written as φ(r, θ, ψ, t) = [(η1φ1 + η3φ3) + A(φI +
φS)]e−iωt, where η1 and η3 are the amplitudes of the surge and heave motion,
respectively, and φ1 and φ3 are the spatial velocity potential for the surge and
heave motions, respectively. The notationA is the amplitude of the incoming wave
and φI and φS are the incoming and scattering wave time independent velocity
potentials, respectively. The frequency of the incoming wave is given by ω.

The radiation and scattering velocity potentials are subjected to the Laplace
equation in the fluid domain, the linearized free surface boundary condition,
a bottom boundary condition that indicates no flux through the bottom of the
fluid, the radiation condition at infinity and the Neumann body surface boundary
condition at the mean position of the body. The hydrodynamic forces and moments
acting on the sphere due to the reaction of the fluid are obtained by the integration
of the hydrodynamic pressure around the surface of the sphere.

The dynamic pressure due to the fluid velocity contributes to the second-order
forces on the sphere , Pd(r, θ, ψ, t) = −ρ/4 � [

(∇φ)2e−i2ωt + ∇φ∇φ∗]. There
is an oscillatory contribution and a time average part. The forces and moments
resulting from the time average part are drift forces and moments, (for a more
detail explanation refer to Mousavizadegan [2]).

3 Drift force

The sphere is also acted upon by a steady force in the direction of the incident
wave propagation. The far field method is applied to find this component of the
drift force. The total velocity potential Φ at large distance from the sphere may be
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defined by, Mousavizadegan [2]

Φ =

{
− igA

ω
eνzeiνR cos(θ−β) +

(
2

πνR

) 1
2

eνzei(νR+ π
4 )H(ν, ψ)

}
e−iωt. (1)

The main task is to obtain an expression for H-function to find the drift force.
This function results from the scattering and radiating effects of the sphere in fluid
domain. It may be written that, H(ν, ψ) = HS(ν, ψ) + H1(ν, ψ) + H3(ν, ψ),
where HS(ν, ψ) is the scattering H-function, H1(ν, ψ) is the surge H-function
and H3(ν, ψ) is the heave H-function.

The scattering potential and the potentials due to the motion of the sphere in x-
and z-directions can be expressed by

φS(r, θ, ψ) =
∞∑

m=0

∞∑
n=m

an+2Am
n φ̂

m
n cosmψ and

φm
j (r, θ, ψ) =

∞∑
n=m

an+2Bm
n φ̂

m
n cosmψ, (2)

respectively, where φ̂m
n is the multipole potential. The coefficients Am

n and Bm
n

are obtained through the solution of the first-order problems of diffraction and
radiation. These coefficient are computed by the solution of the following systems
of linear algebraic equations.

∞∑
n=m

Am
n

[
(n+ 1)Pm

n (cos θ) −
∞∑

u=m

(Cm
un + iDm

un)an+u+1Pm
u (cos θ)

]
=

Aωe−νhεmi
m+1 cosmψ

∞∑
u=m

(−1)m+u−1 u

(u+m)!
(νa)u−1Pm

u (cos θ)

for m = 0, 1, · · · (3)

∞∑
n=1

B1
n

[
(u+ 1)δun − (C1

un + iD1
un)uan+u+1

]
= −iωδu1

∞∑
n=0

Bn

[
(u+ 1)δun − (Cun + iDun)sau+s+1

]
= iωδu1

and u = 0, 1, 2, · · · (4)

The coefficientAm
n is related to the diffraction problem,B1

n and Bn are attributed
to the radiation problem. The coefficient B1

n and Bn are related to the surge and
heave motions of the sphere, respectively. A detail description of the derivation
of these system of linear algebraic equations and the definition of the attributed
parameters are given in Mousavizadegan [2].
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The asymptotic form of the multipole potential can be expressed according to
Mousavizadegan [2] in the following form

φ̂m
n → −2πi

(−1)m+n

(n−m)!
νn+1eν(z−h)

(
2

πνR

) 1
2

ei(νR−mπ
2 −π

4 ) (5)

at a large distance from the sphere.
Substituting (5) in (2), the scattering and radiation velocity potentials are

obtained and accordingly the H-functions are found in the form

HS(ν, ψ) = −2πie−νh
∞∑

m=0

∞∑
n=m

(−1)m+n

(n−m)!
an+2Am

n ν
n+1e−i(m+1

2 )π cosmψ

H1(ν, ψ) = 2πie−νh
∞∑

n=1

(−1)n+1

(n− 1)!
an+2B1

nν
n+1 cosψ

H3(ν, ψ) = −2πe−νh
∞∑

n=0

(−1)n

n!
an+2Bnν

n+1, (6)

where the H1(ν, ψ) and H3(ν, ψ) are for unit motion of the sphere in x- and z-
directions.

The horizontal drift forces and moment are obtained according to
Mousavizadegan [2] by

F̄x = − ρ

2π

∫ 2π

0

H(ν, θ)H∗(ν, θ) cos θ dθ +
ρ ωA

ν
�

[
H(ν, β)

]
cosβ

F̄y = − ρ

2π

∫ 2π

0

H(ν, θ)H∗(ν, θ) sin θ dθ +
ρ ωA

ν
�

[
H(ν, β)

]
sinβ

M̄z = − ρ

2πν
�

[ ∫ 2π

0

H∗(ν, θ)H ′(ν, θ) dθ
]
− ρgA

ων
�

[
H ′(ν, θ)

]
. (7)

The horizontal force in y-direction and the yaw drift moment are zero due to the
orthogonal property of cosine and sine functions and the direction of the incident
wave propagation along x-direction. Replacing (6) in (7), the horizontal drift force
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acting on the sphere in the x-direction is given in the form

F̄x = −2πρe−νh

{ ∞∑
m=0

[
e−νhwm�(CmC

∗
m+1) +

ωA

ν
� (

e−i mπ
2 Cm

)]

+ e−νh�[
CR1 (w0C

∗
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∗
2 )

]
+
ωA

ν
� (

e−i π
1.1CR1

)
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∗
1 ) +
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ν
� (CR3)

+ e−νhw0� (CR1C
∗
R3)

}
, (8)

where Cm =
∞∑

n=m

(−1)m+n

(n−m)!
an+2Am

n ν
n+1,

CR1 =
η1
A

∞∑
n=1

(−1)n+1

(n− 1)!
an+2B1

nν
n+1,

CR3 =
η3
A
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n=0

(−1)n

n!
an+2Bnν

n+1, (9)

w0 = 2π and wm = π for m > 0. The parameters denoted by η1/A and η3/A are
the non-dimensional amplitude of the surge and heave motion of the submerged
sphere, respectively. These are obtained by the solution of the equations of the
motions of the sphere. The equations of motions and a detail description of the
computation of η1/A and η3/A can be found in Mousavizadegan [2].

The first bracket in (8) under the summation sign is due to the components of
the diffraction potential. The first part in this bracket results from the scattering
potential, and the second part is due to cross effect of the incoming and scattering
waves. The second line in (8) shows the effect of the surge motion potential
together with the scattering and the incident wave potentials. The third line is due
to the effect of the heave potential together with the components of diffraction
potential. The last term is due to the cross effect of the surge and heave potentials.

4 Results and discussion

The calculations were performed on a sphere of radius a at different immersion
depths. The immersion depth is the distance from the undisturbed free surface to
the center of the sphere and is denoted by h. The computations are carried out
where h/a = 1.25, 1.5 and 1.75 for a set of diffraction parameters in the range
0 ≤ νa ≤ 5.

It is necessary to compute the coefficients Am
n for different values of m and

n. The infinite system of equations (3) are truncated to compute the coefficients
Am

n . It is considered that m = 0, 1, 2, · · · ,M . For each system of equations (m =
constant), the value of n is set to be n = m,m + 1, . . . , N . A value of N = 18
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gives a set of stable solutions for Ka ≤ 10. These solutions do not change with
an increase in the value of N . The number of systems of equations is set to be
M = 11 in computation of the horizontal drift force. This provides a set of stable
solutions for the associated hydrodynamic coefficients with six decimal points for
0 ≤ Ka ≤ 10.

The coefficients Bn and B1
n are obtained by solving the infinite systems of

equations (4). The coefficient Bn is related to the motion of the sphere along
vertical axis z. The coefficient B1

n pertains to the oscillatory motion of the sphere
in x-direction. These infinite systems of equations should also be truncated to find
Bn and B1

n. The value of n is set to be n = m,m + 1, . . . , N , where m = 0
for the heave motion and m = 1 for the surge motion. A set of stable solutions
are obtained with six decimal points by assigning a value of N = 18 for both
coefficients concerned with the heave and surge motions of the sphere.

Table 1: The non-dimensional horizontal drift force due to the diffraction and
radiation velocity potentials at ZG/a = 0.1.

Diffraction problem effect Radiation problem effect

νa 1.25 1.5 1.75 h/a 1.25 1.5 1.75

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.1 0.000074 0.000061 0.000053 0.000055 0.000051 0.000046

0.2 0.001576 0.001145 0.000885 0.000703 0.000622 0.000522

0.5 0.047610 0.022419 0.012160 0.021574 0.014924 0.009263

1.0 0.166323 0.045473 0.015253 0.036821 0.013902 0.005112

2.0 0.096621 0.012436 0.001786 0.027197 -0.000210 -0.000230

3.0 0.036705 0.002088 0.000117 0.004178 -0.000007 -0.000009

4.0 0.013933 0.000320 0.000006 0.000396 0.000002 0.000000

5.0 0.005346 0.000046 0.000000 0.000021 0.000000 0.000000

The horizontal drift force is computed using (8). In this equation, the first
bracket under the summation sign is the contribution of the components of the
diffraction velocity potential. The rest are the effect of the radiation velocity
potentials. The drift force is made non-dimensional by dividing by 1

2ρgA
2a.

Table 1 shows the calculated values for the non-dimensional horizontal drift force
acting on a sphere, due to the effect of the components of the diffraction potential
and the radiation potentials, separately.

The contribution of the diffraction velocity potential components to the
horizontal drift force is more pronounced than the contribution of the radiation
velocity potentials. The effect of the radiation velocity potentials to the horizontal
drift force arises from their cross product either with each other or with the
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Figure 2: The effect of different velocity potentials on the horizontal drift force at
h/a = 1.25 and ZG/a = 0.1.

components of the diffraction velocity potential. The contribution of the diffraction
problem velocity potentials to the horizontal drift force is about four times the
effect of the radiation potentials in 0.7 ≤ νa ≤ 2.5 at h/a = 1.25 and
ZG/a = 0.1. The effect of the radiation velocity potentials increases for νa < 0.7,
but is less than the effect of the diffraction potential components at h/a = 1.25
and ZG/a = 0.1. The influence of the radiation velocity potentials is impaired for
νa > 2.5. The contribution of the radiation potentials decreases with increasing
immersion depth.

The effect of each velocity potential on the horizontal drift force is depicted
in Fig. 2 at h/a = 1.25 and ZG/a = 0.1. The influence of the motion of the
sphere may be separated into the cross effect resulting from the surge motion
with the scattering and incoming waves, the contribution of heave motion with
the scattering and incident waves and the surge motion with the heave motion. As
illustrated in Fig. 2, the effect of the heave motion is almost canceled out by the
effect of the two other components. Therefore, the contribution of the motion of
the sphere is much less than the effect of the components of the diffraction velocity
potentials.

The horizontal drift force is also affected by the position of the center of mass, as
illustrated in Fig. 3. The ratio of the center of the mass to the radius of the sphere is
set to vary from 0.1 to 0.5. The sphere is more stable when ZG/a is increased. As
shown in Fig. 3, a more stable sphere experiences a higher drift force. The effect of
the radiation velocity potentials near the resonance frequency is significant. It may
cause a rapid movement of the sphere near the resonance frequency. This is more
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Figure 3: The effect of the location of the center mass on the horizontal drift force
of a sphere at h/a = 1.25.

pronounced when the stability of the sphere is increased. A wider range of wave
spectrum is affected by the resonance frequency if ZG/a is increased. It seems that
the proper position of the center of mass for a spherical structure is less than 0.2a
in respect of the horizontal drift force.

5 Conclusions

The results of the analytical solutions for a submerged sphere indicate that:
• the horizontal drift force acting on the spherical structure is mostly due to

the effect of the components of the diffraction velocity potential;
• the individual components of the radiation velocity potential alone have no

effect on the horizontal drift force;
• the effect of components of the radiation velocity potential results from the

cross-product either with each other or with the scattering and incoming
velocity potentials;

• the effect of the heave velocity potential almost cancels out the contribution
of the surge velocity potential;

• the total contribution of the radiation velocity potential is minimal to the
horizontal drift force if the center of mass is at a distance less than twenty
percent of the radius from the center of the sphere;

• the effect of the radiation velocity potential in vicinity of the resonant
frequency is augmented and may create a relatively large steady force; and

 © 2007 WIT Press
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 92,

Fluid Structure Interaction and Moving Boundary Problems IV  23



• it is desirable to set the center of mass at a distance less than twenty percent
of the radius from the center of the sphere.

This problem can be extended to a more general case and to study the effect of
fluid depth on the drift force, taking into account the contribution of the radiation
velocity potentials. It can be more generalized to derive the total drift force using
the near field method, which is the integration of the dynamic pressure stemming
from the fluid velocity around the body surface. This also provides the solution for
the vertical drift force which may be useful in the study of the motion of spherical
structures under the free surface of a fluid.
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