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Abstract 

The steady wave drift force on a submerged body is a second-order quantity. 
With a potential flow assumption, the force arises from the diffraction and 
radiation of the waves from the interaction with the body. For a fixed body in 
waves the steady force is contributed from the wave diffraction effect alone. 
Numerical solutions are generally needed for the computation of the steady drift 
force on submerged structures. In this paper the steady wave drift forces on 
several fixed bodies of basic shapes are derived in closed form. The paper 
addresses the steady drift forces on the following basic structures: a vertical 
circular cylinder, a submerged horizontal cylinder, a bottom-seated horizontal 
half cylinder, and a bottom-seated hemisphere. The results developed 
demonstrate the importance of various independent non-dimensional parameters. 
A numerical program based on linear diffraction/radiation theory is used to 
validate the closed form solution. 
Keywords:   basic objects of symmetry, closed form solution, design curves, 
steady drift force, wave structure interaction. 

1 Introduction 

The linear wave forces on a large structure are computed from the linear 
diffraction theory based on the (Bernoulli’s) linear pressure term in its 
equilibrium position up to the still water level.  However, the structure motion, 
wave free surface, and the (Bernoulli’s) nonlinear pressure terms introduce 
nonlinear forces on the structure not predictable by the linear theory. The steady 
wave drift force has been shown to derive from the first order wave potential. 
The 3-D diffraction/radiation theory is well established to compute these forces. 
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For floating offshore structures, the steady drift force can be an important design 
contribution, especially for soft moored systems. 
     The purpose of this paper is to derive the steady drift forces on a few fixed 
bodies of basic shapes in closed form and discuss the contribution of various 
parameters and different terms in the total drift forces on these fixed bodies. The 
results presented here for these basic shapes should be useful to designers of 
offshore structures, which is generally composed of these basic components, in 
order to evaluate the magnitudes of these forces and to determine the importance 
of the steady drift force for these components. 

2 Literature review 

Much work has already been done with the numerical computation of steady 
drift forces. These works have been carried out assuming the structure to be rigid 
and either freely floating or fixed. They are too many to cite here. One 
noteworthy one is by Pinkster [5] who studied second order steady drift forces 
and low frequency forces using 3-D diffraction/radiation theory. Ogilvie [6] 
summarized both momentum and pressure integration approach for drift force 
calculations. 
     Skourup et al. [7] investigated non-linear loads on fixed body due to waves 
and current using potential theory and 3-D Boundary Element Method and 
computed second order steady and oscillatory forces on a vertical circular 
cylinder. 

3 Theoretical background 

The linear diffraction theory is based on a velocity potential function Φ  which is 
composed of an incident wave potential, and a scattered potential from the fixed 
body. Once the velocity potential is known the steady drift forces on the fixed 
body are computed from two sources. 
     If the body extends above the mean water level, the steady drift force due to 
free surface effect is 

 dlngF ir
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where ρ = water mass density, g = gravitational acceleration, ηr = wave elevation 
at the body surface including diffraction effect, i = direction of the drift force 
component, ni = surface direction normal component along i, and WL = water 
line of the body in its equilibrium position. The second component is the steady 
drift force due to Bernoulli’s velocity-squared term 
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where u,j represents the water particle velocity components along the three body 
coordinates based on the first-order velocity potential and dS is the elemental 
area on the submerged part of the body surface up to the still water level, S0. 
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4 Closed form formulas 

The steady drift force due to the incident wave on any symmetric basic shape 
(with respect to the wave direction) can be shown to be identically zero due the 
symmetry of the pressure distribution. Thus the contribution to the second-order 
drift force comes from the diffraction potential. 

4.1 Vertical cylinder 

Let us consider a vertical cylinder resting on the ocean floor and extending above 
the free surface. Vertical cylinder is the most researched shape for wave forces. 
It has led to many studies for decades (analytical, numerical and experimental), 
and linear results, second-order results and fully non-linear results for the wave 
forces and the wave runup on the cylinder can be found in the literature. For a 
bottom-seated cylinder extended above the free surface, MacCamy and Fuchs [4] 
developed the forces on a fixed vertical cylinder in a closed form using the 
Bessel function series. The closed form expression for the first-order velocity 
potential was used by several researchers to derive the second order components 
of the forces (see, e.g.. Chakrabarti [1]). 
     While it is one of the simplest shapes, it has several offshore applications 
including the deep draft floating SPAR in deep water in waves whose pressure 
decays to near-zero at the bottom of the SPAR. 
     The total linear velocity potential including diffraction at the surface of a 
bottom-mounted cylinder, r = a (e.g., Chakrabarti [3]) is written as 
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where a = cylinder radius, H = wave height, ω = wave frequency, k = wave 
number, t = time, (r,θ) = cylindrical polar coordinates, and the coefficients 
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and the functions J’ (ka) and Y’ (ka) are the derivatives of the Bessel function of 
the first and second kind. The first-order wave profile at the surface of the 
cylinder, r = a, becomes: 
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Upon integration of Eq. (1) around the cylinder the non-dimensional component 
of the horizontal steady drift force due to the free surface at the vertical cylinder 
reduces to 
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the above expression reduces to 
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which is a function of ka only and does not depend on the water depth. The non-
dimensional mean velocity-squared force has the form: 
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In deep water combining the two expressions, the total drift force on the vertical 
cylinder is 
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The non-dimensional steady forces (Eqs. (7)-(8)) on a bottom-seated vertical 
cylinder for various values of d/a are given in Fig. 1 as functions of ka. The free 
surface contribution is independent of the water depth and is positive. The 
velocity-squared term is negative and is only a weak function of water depth at 
the low values of ka (long periods). The net steady drift force on the cylinder is 
positive and increases with the higher ka values (short periods). It is also 
relatively independent of the water depth. The closed form solution is validated 
in Fig. 2 by comparing the results with the numerical solution based on the 
well-established boundary element linear diffraction theory. The cylinder in the 
numerical solution was represented by 2000 panels. Note that the results from 
Skourup et al. [7] also match well (Fig. 2). 
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Figure 1: Horizontal steady drift force on a vertical cylinder. 
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Figure 2: Validation of steady drift force on a vertical cylinder. 

4.2 Bottom-mounted horizontal half-cylinder 

Let us now consider a horizontal half-cylinder seated on the ocean bottom 
(Chakrabarti [2]). A possible application of this geometry is the buried ocean 
floor pipelines used for the transportation of crude oil from the production 
platform to shuttle tankers or shore. 
     An appropriate cylindrical coordinate system (r,θ) is chosen to describe the 
velocity potential. Based on the linear diffraction theory for a bottom-seated half-
cylinder the velocity potential at the surface of the cylinder, r = a, can be 
expressed in a closed form as long as the half cylinder is removed from the free 
surface so that the effects of the free surface on the velocity potential is 
considered small and can be ignored.  In this case the velocity potential becomes 
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For the half-cylinder on the ocean bottom it has been shown that an accurate first 
order solution can be obtained as long as d/a is equal to 2 or greater. 
     The steady horizontal drift force for a submerged half-cylinder due to the 
velocity-squared pressures is identically zero. The vertical component of the drift 
force is obtained from the integral 
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where the dynamic pressure is derived from the velocity-squared term. Since the 
normal velocity on the surface of the cylinder is zero, the only contribution to the 
velocity-squared term on the 2-D half-cylinder is 
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The values of the integral I1(ka) versus ka are given in Table 1. 
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Figure 3: Vertical steady drift force on a horizontal half-cylinder. 
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     The results on the steady drift force versus ka are given in Fig. 3 for various 
depths of submergence. For brevity the results are shown for d/a value down to 
1.5. It can be seen that the forces increase in value as the ka value decreases. As 
expected, the magnitude of the non-dimensional force decreases rapidly with 
increase in the water depth. 

4.3 Deep-submerged horizontal cylinder 

For a deeply submerged horizontal cylinder away from the free surface the effect 
of the free surface may be ignored. It is also assumed that the cylinder is 
somewhat removed from the ocean floor. In this case, a closed form expression 
of the velocity potential has the form quite similar to the velocity potential for 
the half-cylinder, Eq. (10), by introducing the depth of submergence ks0 in the 
cosh terms. By the same reasoning the validity of this potential function for the 
first-order force can be shown to be applicable for a d/a value of at least equal to 
2. A possible application of this geometry is a submerged component of an 
offshore structure. 
     The time independent velocity-squared pressure is obtained from the velocity 
potential as 
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The horizontal component of the force is identically zero. The vertical 
component is given by 
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     Table 1 lists the values of I2(ka, s0/a) for different values of s0/a. The results 
on the steady drift force versus ka are given in Fig. 4 for various depths of 
submergence s0/a. It can be seen that the forces peak at intermediate ka values. 
As expected, the magnitude of the non-dimensional force decreases rapidly with 
the depth of submergence as well as ka values. 
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Table 1:  Values of integrals I1(ka) and I2(ka, s0/a). 

 
ka I1(ka) I2(ka, s0/a) I2(ka, s0/a) I2(ka, s0/a) I2(ka, s0/a) 
  s/a=1 s/a=1.5 s/a=2 s/a=2.5 
0.1 2.0267 0.021637 0.032725 0.044142 0.056 
0.2 2.1078 0.058073 0.090012 0.12556 0.16615 
0.3 2.2458 0.075159 0.12118 0.1782 0.25137 
0.4 2.4452 0.070808 0.12035 0.1894 0.28917 
0.5 2.7124 0.056239 0.1019 0.17356 0.28953 
0.6 3.056 0.040324 0.078597 0.14602 0.26762 
0.7 3.4872 0.02707 0.057172 0.11645 0.23516 
0.8 4.0201 0.017382 0.039996 0.089602 0.19968 
0.9 4.672 0.010818 0.027232 0.067232 0.16547 
1 5.4644 0.0065826 0.018182 0.04953 0.13468 
1.1 6.4233 0.0039392 0.011965 0.035988 0.10813 
1.2 7.5807 0.0023278 0.0077869 0.025871 0.0859 
1.3 8.975 0.0013623 0.0050243 0.018443 0.067674 
1.4 10.653 0.0007912 0.0032196 0.013059 0.052958 
1.5 12.671 0.00045673 0.0020517 0.0091964 0.041215 
1.6 15.097 0.00026236 0.0013015 0.0064469 0.031932 
1.7 18.013 0.00015009 0.00082249 0.0045024 0.024646 
1.8 21.519 8.5578e-05 0.00051809 0.0031343 0.018962 
1.9 25.735 4.8654e-05 0.00032545 0.002176 0.014548 
2 30.806 2.7594e-05 0.00020396 0.0015071 0.011136 
2.1 36.906 1.5616e005 0.00012755 0.0010416 0.0085061 
2.2 44.248 8.8215e-06 7.9626e-05 0.00071863 0.0064856 
2.3 53.085 4.9751e-06 4.9627e-05 0.00049499 0.0049371 
2.4 63.726 2.8017e-06 3.0886e-05 0.00034046 0.003753 
2.5 76.544 1.5757e-06 1.9197e-05 0.00023387 0.0028491 
2.6 91.989 8.8519e-07 1.1918e-05 0.00016046 0.0021605 
2.7 110.61 4.9674e-07 7.3914e-06 0.00010998 0.0016365 
2.8 133.05 2.7848e-07 4.5796e-06 7.531e-05 0.0012384 
2.9 160.12 1.5599e-07 2.8349e-06 5.1522e-05 0.00093637 
3 192.77 8.7301e-08 1.7535e-06 3.522e-05 0.00070741 
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Figure 4: Vertical steady drift force on a horizontal cylinder. 

4.4 Bottom-mounted hemisphere 

Let us consider a hemisphere seated on the ocean bottom (Chakrabarti and 
Naftzger [2]). The spherical coordinate system is adopted in terms of θ and µ.  
Based on the linear diffraction theory for a bottom-seated hemisphere the 
velocity potential at the surface of the cylinder, r = a, can be expressed in a 
closed form as long as the hemisphere is removed from the free surface with a 
d/a ratio of at least 1.5, so that its effects on the velocity potential can be 
ignored.  In this case the velocity potential becomes 
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where 2
1 2 2 /T X R X R= − +  and 2

2 /2 RYYT −= . For a bottom-seated 
hemisphere the steady horizontal surge drift force due to velocity-squared 
pressures is written as 
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Substituting the value of λ the normalized force reduces to 
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(23) 
The vertical component of steady drift force is computed from 
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so that the only change in Eq. 23 is to replace cosθ with sinθ. 
     The results on the non-dimensional steady horizontal and vertical drift forces 
versus ka are given in Fig. 5. It can be seen that the forces peak at an 
intermediate ka value. As expected, the magnitude of the non-dimensional force 
decreases rapidly with the depth f submergence. 
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Figure 5: Horizontal and vertical steady drift forces on a bottom-seated 
hemisphere. 

5 Conclusions 

The second-order steady wave drift forces on a few fixed basic objects of 
symmetry have been computed based on the total diffraction potential.  The 
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objects chosen are the vertical cylinder, submerged horizontal cylinder, bottom-
seated horizontal half-cylinder, and bottom-seated hemisphere. For the vertical 
cylinder extending above the still water level, the horizontal drift forces receive 
contributions from the free surface as well as the Bernoulli’s velocity-squared 
terms. For the other fixed bodies the contribution comes from the velocity-
squared term only, as the objects do not penetrate the mean water level. 
     The expressions for the steady forces are obtained in closed forms. It is shown 
that the forces depend on the non-dimensional diffraction parameter ka and the 
depth to radius ratio d/a.  For the submerged horizontal cylinder, the forces are 
also a function of the non-dimensional submergence depth, s0/a. 
     Comprehensive results are presented for these shapes for different values of 
these non-dimensional parameters so that they can be used directly to estimate 
the drift force in a design of these components. 
     While the results are limited to bodies of specific basic shapes, they constitute 
members of most offshore structures, including submerged pipelines, caissons, 
TLP, Spar, and semisubmersible. It is expected that the formulas and numerical 
results presented here will have applications in the design of such structures. 
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