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Abstract 

A proper forecast of a flood event with a good lead time can result in a flood 
warning and the issue of effective measures, which can play a major role in 
mitigating the severe damage that could occur due to this natural disaster.  The 
literature is rich in research for flood forecasting, but due to the complexity and 
high variability of the driving factors for floods, many of these models fail to 
accurately forecast floods.  
     In this research, two models have been developed to forecast the levels for 
Lake Wakatipu in New Zealand during flood events.  The first model is based on 
a simple hourly mass balance for the lake.  However, the choice of the lagged 
lake level and the cumulative rain in the model formulation were based on a 
correlation analysis of the available data for the rainfall and lake levels.  The 
second model is a simple regression model that relates the rise of the lake level 
to the total observed rain.  The first model forecasts lake levels 10 hours in 
advance, while the second model gives 11 hour forecasts.  The two models 
performed well, but the first model is preferred as it is likely to be less biased to 
the events it was derived from compared to the second one.   
     On the other hand, non linear optimization has been applied to estimate the 
parameters of a simple transfer function model, similar to the unit hydrograph 
concept, for forecasting the Kakanui River flows in Otago, New Zealand. An 
adjusted form of Philip’s equation for infiltration was used to estimate the 
abstraction of the rainfall event and obtain the effective rainfall that will 
contribute to the river flow.  Weighing factors were assigned to each of the 
rainfall sites to obtain the best fit between observed and forecasted flows.    
Keywords: flood forecast, flood modelling, rainfall-runoff, lake level, non-linear 
optimisation. 
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1 Introduction 

Floods are one of the most destructive natural disasters, which cause enormous 
damage and loss of life every year.  Floods can have catastrophic impact on our 
life, and can cause widespread damage over affected regions.  Flood forecasting is 
an essential tool for flood warning.  A proper flood warning could mitigate the 
impact of a flood event by giving people/authorities enough time to evacuate, take 
stock or precious items away, or prepare a temporary flood protection scheme. 
     The Environment Agency of UK has called for a complete review of its flood 
forecasting and warning system in response to the devastating impact of the 
Easter 1998 floods of Wales and England, while the strategic plan for the US 
National Weather Service urges for major investment to develop new forecast 
models for flood warning [1, 5].     
     Available mathematical models in the literature can be categorized into two 
main approaches.  The first approach simulates the associated hydrologic 
processes and utilizes hydraulic or hydrologic routing to estimate river flows.  
The second approach incorporates the concept of a transfer function (step or 
simultaneous) to relate effective rainfall to river flow.  These techniques are 
mainly dependent on the simulation of rainfall losses to obtain the effective 
rainfall, and consequently use hydraulic/hydrologic routing or a response 
function to estimate the river flow [2–4, 6, 7]. 
     One of the major obstacles for distributed flood modelling for flood forecast 
is the high variability of spatial and temporal distribution of the rainfall event 
over the catchment, especially for large catchments [8].  Research is advancing 
towards the use and utilization of radar data to estimate the spatial distribution of 
a rainfall event over a catchment [12].    
     In this paper, lake models are based on a simple hourly hydrologic budget 
equation, and a simple regression model.  The procedure to derive these models 
was applied to Lake Wakatipu, Otago, New Zealand.  Correlation analysis of 
available rainfall and lake levels data were intensively used to identify lagged 
parameters for these models.  The forecast model for river flows has focused on 
establishing a proper transfer function between hourly rainfall and flow data.  
Due to the non-linearity of the objective function to minimize, in order to 
estimate the model’s parameters, a non derivative optimization technique had to 
be applied.  The Powell algorithm for non-linear optimization has been utilized 
to estimate the model’s parameters which describe the infiltration losses, the 
weighted average between rainfall sites, and the parameters of the transfer 
function.  The Powell algorithm [10, 11], which is an expanded variation of the 
univariate gradient search, has been widely applied to water resources problems.  
The Kakanui catchment in North Otago has been selected for the development 
and application of this model. 

2 Forecast of lake levels 

Rise of lake levels due to flood events is mainly dependent on the cumulative 
rainfall for the rain storm as the outflow of the lake is dependent on the lake 
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level regardless of how much inflows to the lake are.  Two models have been 
developed to forecast flood levels for Lake Wakatipu in Otago, New Zealand.  
Queenstown, a famous town in New Zealand, lies on Lake Wakatipu and is 
popular for its tourism attractions/activities.  The lake area is about 293 km2, 
while the whole catchment area is about 3100 km2, see Fig. 1.  In November 
1999, Queenstown suffered a major flood and the business area beside the lake 
was completely flooded with devastating losses to the community and the region.  
Moreover, properties in the flood prone area are facing problems to get insurance 
after this flood event.  The Kawarau River is the main outlet for the lake, and 
contributes its water to the Clutha River, which is the largest river in New 
Zealand.  
 

 

Figure 1: Lake Wakatipu, New Zealand. 

2.1 Lake model-1 formulation 

An hourly hydrologic balance for a lake can be expressed as follows: 
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where Lt is the lake level at present time t, tf is the forecast time in hours after t, 
t1 is a lag time before t, Qj is the lake outflow at time j, Rt is the cumulative 
rainfall over a period of hours and f(Rt) is a function of this cumulative rainfall. 
Of course f(Rt) will have units of level (mm in our case).   
     Equation (1) can be re-written as: 
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     The challenge here is to find the best estimates for tf, t1 and for the function 
f(Rt).  Lake outflows are estimated from the rating of the lake which was 
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obtained, along with the rainfall and lake levels for the lake for several events, 
including the flood event of 1999, from the Otago Regional Council, Dunedin, 
New Zealand.  Figure 2 shows the correlation coefficient between cumulative 
rainfall since the start of the rainfall event and the incremental lake level since 
the start of the event (Lt – L0), where Lt is the lake level at time t, and L0 is the 
lake level at the start of the rainfall event (t=0).  In this case, the initial lake level 
L0 at the start of the event is usually used to get the rise of the lake level.   

 
 

Figure 2: Lagged correlations 
between cumulative rain 
and Lake Wakatipu rise. 

Figure 3: Rainfall event of 
November 1999 over 
Lake Wakatipu 
catchment. 

     However, as shown in Figure 3, the rainfall event of November 1999 is 
actually composed of two events, which occurred subsequent to each other.  
Analyses of the lagged correlation structure for each event separately resulted in 
the forecast with 10 hours lead time to have the highest correlation, with an 
average correlation coefficient of 0.93.  The maximum correlation between 
cumulative rainfall and several alternatives for (Lt+10 – Lt-t1) is at lag 11, which 
suggests the use of t1 to be one hour in Eq (1).    Due to the impact of the first 
event on lake levels during the second event, as water from the first event will 
still be draining from the catchment during the second event, the results of the 
first event were given more weight than the second one.  Figure 4 shows the 
relationship between the incremental lake levels (Lt-Lt-11) lagged 10 hours and 
the cumulative rainfall.  The figure clearly shows that a linear relationship is 
quite acceptable for f(Rt).  Thus, Eq. (1) can finally be written as: 

 )(*16.3
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which can be used to forecast lake levels at time (t+10 hrs) based on lake levels 
at time (t-1) and cumulative rainfalls at time t (have in mind that t is present 
time).  To the contrary, Figure 5 shows the relationship in case the bad choice of 
using Lt – Lt-1 instead of Lt-Lt-11

 (tf +t1 = 1 instead of 11 hours, or incremental 1-
hour lake levels, as a normal autoregressive-1 model would do).  The results 
show the importance of carrying this analysis before identifying the best 
candidates for the model variables. 
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Figure 4: Relation between 

cumulative rain and 
lagged 10 hours (Lt–Lt-11). 

Figure 5: Relation between 
cumulative rain and 
lagged 10 hours (Lt–Lt-1). 
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Figure 6: Relation between cumulative rain and lake rise. 

2.2 Lake model-2 formulation   

By using a forecast time of 11 hours, figure (6) shows the relation between 
cumulative rain from the start of the rain process, and the lake rise, compared to 
the start of the event.  Model 2 is written as: 

 tttt RRRL 13.1)(39)(9.67 23
11    (4) 

where ΔLt+11 is the rise of lake level since the start of the rainfall event and up to 
11 hours after present time t, and Rt is the cumulative rainfall since the start of 
the rainfall event up to the present time t.  The equation is really simple, and the 
trick was to get the suitable lag time for forecast.  However, it is expected that a 
non-linear equation like this will be more biased towards the event from which it 
was estimated (November 1999 flood event) compared to the first model. 
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2.3 Model testing 

Both model-1 and model-2 were verified by applying them to events which were 
not included in their calibration process to estimate their parameters.  Figures 7 
and 8 show that both models performed well.  However, model-1, in general, 
overestimated lake levels more than model-2.  It is quite interesting to note that 
Model-2 is performing well despite its simplicity.   
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Figure 7: Model testing for rainfall events during November 1997. 

Figure 8: Lake models testing for the rainfall events during September–
October 1998. 
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3 Forecast of river flows 

A forecast model for the flows of the Kakanui River in North Otago has been 
developed by using non-linear optimization to estimate the parameters of a 
transfer function to transfer rainfall into river flows, similar to the concept of the 
Unit Hydrograph [4, 7].   
     The Kakanui River flows into the Pacific Ocean 10km south of Oamaru, New 
Zealand. With a catchment of 894km2, the catchment consists of about 35% river 
valley and 40% of rolling hills of less than 600m elevation. The remaining 25% 
of the catchment is mountainous, reaching heights of some 1640m [9].  Figure 9 
shows the Kakanui catchment with rainfall and flow sites, and with the location 
for the samples for the infiltration test carried out for this research. 
 

 

Figure 9: Location of soil sampling sites, rain-gauges, and flow monitoring 
sites for the Kakanui catchment. 

3.1 River forecast model 

The concept behind this model is that each catchment should have its own 
“unique” hydrologic characteristics which will impact on its response to a 
rainfall event.  This transfer function is assumed to be invariant with time, and 
the case which is presented here considers a linear transfer function.   The 
parameters of the transfer function have been estimated by using Powell 
algorithm to minimize the objective function which describes the relation 
between observed and modelled flows.  The objective function Fx is defined as 
the sum of squared errors as follows: 

The Dasher 

Clifton Falls 

Soil Samples 
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where m is the number of events included in the calibration process, nj is the 
number of intervals of event j, Qi,j is the observed flow at interval i of event j, 

and jiQ ,


 is the forecasted flow for event j at time interval i.  The forecasted flow 

jiQ ,


 is calculated from the transfer function X as follows: 
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where L is the rainfall intervals of event j, Rk is the rainfall depth at time interval 
k, and Xi is the ith parameter of the transfer function.  It should be noted that the 
objection function Fx is highly nonlinear in so many parameters, and thus a 
numerical non-linear optimization technique had to be carried out.  

3.2 Hydrologic abstractions 

Philip’s equation to simulate infiltration through a soil [7] was used to estimate 
the hydrologic abstractions from a rainfall event in the model.  The infiltration 
rate is defined as: 

 
t

b
aft

2
  mm/ (7) 

while the cumulative infiltration is: 

 tbatfF
t

tt  
0

    (8) 

     It is the cumulative infiltration after a time interval “t” which we are 
interested in for this model.  However, this model assumes ponding conditions 
apply since the start of the event, which is not the case.  To account for this, 
cumulative infiltration every time step has been calculated and compared to the 
cumulative rainfall up to this time step, then the estimated infiltration depth is 
taken as the smaller value of the cumulative observed rain or the cumulative 
infiltration depth from equation (8).  The same procedure was carried out to 
define the ponding time, after which equation (8) is applicable.  The parameters 
for the infiltration model were estimated also through the optimization process 
by Powell algorithm.  It should be noted that equation (8) was used to estimate 
the abstraction losses, and in turn the effective rainfall of the event.   
     Moreover, an infiltration test, using the double ring infiltrometer, was carried 
out at two sites in the catchment to investigate the infiltration capacity of the 
Kakanui catchment.  The locations of these two sites are at the upper of Clifton 
Falls, and at the Dasher, as illustrated in Fig. 9.  The average “stable” observed 
infiltration rates at upper Clifton Falls and the Dasher were 40 mm/hr and 150 
mm/hr, respectively.  This is a very high value, and will exceed the rate of any 
rainfall event.  However, these infiltration tests were carried out for a flat area, 
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while the majority of the catchment is hilly.  Moreover, a rainfall runoff 
experiment was carried out in the field (also for almost a flat area) in the upper 
Clifton Falls catchment, and confirmed that the “steady” infiltration capacity of 
the “flat” soil is higher than 30mm/hr. 
     In addition to at site field experiments, two soil samples of the Kakanui 
catchment at upper Clifton Falls and the Dasher have been obtained for further 
experiment in the hydraulic lab of Lincoln University.  Each sample is 
700x700x200 mm, and a sprinkler was used to simulate rainfall events over these 
samples.  Surface runoff and through flows were collected and measured for 
several simulated rainfall events.  Again, the results confirmed that the 
infiltration capacity of the “flat” soil is high.  The above analysis leads to the fact 
that the infiltration model is used to estimate the temporal hydrologic 
abstractions from a rainfall event, rather than the actual infiltration to the soil, as 
a component of this infiltrated water could contribute to the river flow as a 
through flow.  The optimized values for parameters a and b are 0.5 mm/hr and 
1.5mm/hr0.5, respectively. 

3.3 Model calibration 

Nine observed flood events at Clifton Falls, along with their corresponding 
rainfall events at Clifton Falls and the Dasher, were used for model calibration 
and the estimation of the model parameters.  Table 1 presents a summary of 
these flood events. 
     The selected floods for model calibration cover a wide variety of flood events 
with regard to the duration, total rainfall, peak flow and the total runoff volume, 
as shown in table 1.  Moreover, it is obvious from the table that usually the 
Dasher receives more rain than Clifton Falls.   Unfortunately, the ratio between 
the rainfalls of the two sites is not the same for all rainfall events, and in some 
 

Table 1:  Flood events for model calibration. 

Event Date 
Duration 

(hrs) Total Rain (mm) 
Peak 

Flow(m3/s) 

Total 
Runoff 

(106 
m3) 

   Dasher 
Clifton 

falls 
Clifton 
Falls 

Clifton 
Falls 

1 13/06/1995 85 128.0 37.5 77.1 9.0 
2 20/11/1996 43 31.0 37.0 82.1 3.1 
3 4/02/1997 56 73.8 22.5 44.3 3.4 
4 31/08/2000 129 217.0 67.0 148.0 19.0 
5 18/07/2001 50 40.0 15.0 12.0 0.8 
6 20/07/2001 72 149.0 77.0 96.0 7.9 
7 12/01/2002 63 265.0 62.5 256.0 16.7 
8 10/01/2002 68 182.5 58.5 256.6 11.9 
9 12/01/2002 63 265.0 62.5 256.0 16.7 
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cases, such as event 2, Clifton Falls received more rain than the Dasher.  Of 
course this is dependent on the rainfall event, its direction, and its spatial 
distribution as it hits the catchment.  Such discrepancy is expected to confuse the 
model.  Figure 10 presents a good match between the forecasted and observed 
flows using the developed model for events 8 and 9 “January 2002”.  This could 
be attributed to the fact that Clifton Fall’s rain was less than 1/3 the rainfall at the 
Dasher for events 8 and 9, which is the case for most of the events.  The good 
performance of the model for the flood events of January 2002 indicates the 
ability of the model of reliably forecasting the flows of flood events which 
preserve the pattern of the significantly lower rainfall at Clifton Falls than the 
Dasher. 

3.4 Model validation 

The fitted forecast model for the Kakanui River was applied to several flood 
events which were not included in its derivation.  Figure 11 presents the 
application of the transfer function model to the observed rainfall events at 
Clifton Falls and the Dasher, then comparing the forecasted flows versus the 
observed ones.  The model performed well in forecasting the flood flows of the 
event 11 February 1997, and did well in forecasting the peak flow for the most 
recent event on 30 July 2007.  It is noted that the Dasher rain gauge stopped 
sending signals for its rainfall after about 20 hours from the start of the event, 
and estimated values for the Dasher rainfall were estimated based on Clifton 
Falls.  This could have an impact on the hydrograph for the forecasted flows. 

4 Conclusions 

Two simple models for the forecast of lake levels have been derived and applied 
for Lake Wakatipu, New Zealand.  Both models were capable of properly 
forecasting the lake level, and, in general, performed well.  Intensive analysis of 
the correlation structure between incremental lake levels with different lags and 
 

 

Figure 10: Flood event January 
2002 (events 8 and 9). 

Figure 11: Flood event 11 February 
1997. 
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cumulative rainfalls was carried out to identify key parameters for the model.  
The approach has shown the importance of properly carrying out the correlation 
analyses, otherwise a major error in regard to the use of a wrong lag between the 
model’s variables would result in a useless model. 
     The derived model for river flow forecast was capable of forecasting the 
Kakanui River flows satisfactory.  However, the high variability of rainfall 
events, and the difficulty of representing the spatial variability of a rainfall event 
makes it difficult to exactly estimate the perfect transfer function.  Moreover, the 
derived transfer function was linear, while adding non linearity could improve 
the performance of the derived model.  In addition, it is recommended to include 
the direction or the type of the rainfall event as this could incorporate the spatial 
variability in the modelling process 
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