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Abstract 

As part of the flood risk assessment in The Netherlands, extreme hydraulic 
boundary conditions (HBC) at coastal water defenses are calculated to assess the 
safety and sufficiency of the defenses. For this purpose, extreme offshore values 
of wave height and wave period with a frequency of occurrence of 1/10,000 
years need to be estimated. The estimation is carried out using measurements at 
nine offshore locations in the North Sea, with a record length of 30 years.  
     To estimate extreme wave heights and wave periods, the Generalized Pareto 
Distribution (GPD), which follows from extreme value theory, was fitted to 
peaks-over-threshold (POT) at each of the nine measurement stations. The fitted 
GPD parameters and consequently the extrapolated extreme values are 
particularly sensitive to the choice of threshold. A reproducible method was 
employed for threshold selection based on the anticipated behavior of the GPD 
shape parameter as the threshold approaches the domain of attraction. A 
modified regional frequency analysis (MRFA) was subsequently carried out to 
spatially smooth the GPD shape parameters. Final GPD fits were made using the 
shape-parameter output of the MRFA to produce final extrapolated extreme 
value estimates. The extreme values were compared with those resulting from an 
operationally-used distribution function in The Netherlands known as the 
conditional Weibull distribution.  
Keywords:  extreme value theory, flood risk, threshold selection, generalized 
Pareto distribution, extreme wave parameters. 
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1 Introduction 

1.1 Background 

The Flood Defences Act of The Netherlands requires that the primary flood 
defences be assessed every five years. The defences must be able to withstand 
extreme conditions, with return periods along the coast varying per location from 
1/4,000 years to 1/10,000 years. The assessment is carried out anew every five 
years to allow for the incorporation of new knowledge, such as improved 
models, improved methodologies, extension of measured time series, and 
updated model input such as changes in bathymetry. The focus in this study was 
on coastal defences. The assessment of these defences requires the estimation of 
extreme hydraulic boundary conditions (HBC), such as water level, wind speed 
and wave parameters at the defence structure. In the current study, the focus was 
on wave heights and wave periods. For the calculation of HBC at the defence 
structures, univariate extreme statistics are first calculated using measurements 
collected at offshore stations in the North Sea. These statistics are then input into 
probabilistic and physical models such as the model Hydra-K (Stijnen et al. [1]) 
and SWAN (Booij et al. [2]) which translate these statistics into loads at the 
defence structures.   

1.2 Objectives 

The univariate extreme statistics at offshore locations are currently calculated 
using a probability distribution referred to as the conditional Weibull 
distribution. This distribution is not the asymptotic distribution predicted by 
extreme value theory (Coles [3]). The objective of the current work was to 
estimate the univariate statistics of wave height and wave period using the 
generalized Pareto distribution, which follows from extreme value theory, and to 
compare these results with those obtained using the distribution currently in use.  

2 Extreme value theory 

Extreme value theory provides an analogue to the central limit theorem for the 
extreme values in a sample. According to the central limit theorem, the mean of a 
large number of random variables, irrespective of the distribution of each 
variable, is distributed approximately according to a Gaussian distribution. 
According to extreme value theory, the extreme values in a large sample have an 
approximate distribution that is independent of the distribution of each variable. 
Extreme value theory can be applied to annual block maxima or to exceedances 
above a high threshold. The former are described by the general extreme value 
(GEV) distribution; the latter by the generalized Pareto distribution (GPD). For 
shorter time series, it is advantageous to opt for the modelling of peak excesses 
with the GPD (Caires [4]). 
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2.1 Peaks-over-threshold method 

The approach based on the exceedances of a high threshold, hereafter referred to 
as the Peaks-over-Threshold (POT) method, consists of fitting the GPD to the 
peaks of clustered excesses over a threshold, the excesses being the observations 
in a cluster minus the threshold, and calculating return values by taking into 
account the rate of occurrence of clusters (Pickands [5, 6] and Davison and 
Smith [7]). Under very general conditions this procedure ensures that the data 
can have only three possible, albeit asymptotic, distributions (the three forms of 
the GPD given below) and, moreover, that observations belonging to different 
peak clusters are (approximately) independent. In the POT method, the peak 
excesses over a high threshold u of a time series are assumed to occur in time 
according to a Poisson process with rate λu and to be independently distributed 
with a GPD, whose distribution function is given by 
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where y > 0, σ > 0 and 1 - ξ y/ σ  > 0. The two parameters of the GPD are called 
the scale (σ) and shape (ξ) parameters. Note that the sign convention of the shape 
parameter can differ; that is, the shape parameter is sometimes considered the 
negative of what is shown in eqn (1). When ξ = 0, the GPD is said to have a 
Type I tail and amounts to the exponential distribution with mean σ; when ξ < 0, 
it has a Type II tail and it is the Pareto distribution; and when ξ > 0, it has a Type 
III tail and it is a special case of the beta distribution. If ξ > 0, the support of the 
GPD has an upper bound, σ/ ξ, which is called the upper end-point of the GPD 
and is to be thought of as the upper-limit of the excesses, the upper limit of the 
variable of interest being then u + σ/ ξ. 
     The m-year return value based on a POT/GPD analysis, zm, is given by 
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     The choice of the threshold in the POT represents a trade-off between bias 
and variance: too low a threshold is likely to violate the asymptotic basis of the 
model, leading to bias; too high a threshold will generate fewer excesses with 
which to estimate the model, leading to high variance.  
     An important property of the POT/GPD approach is the threshold stability 
property: if a GPD is a correct model for excesses above a threshold u0, then for 
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a higher threshold u a GPD should also apply; the two GPDs have identical 
shape parameter and related scale parameters (Coles [3]). 
     There are several methods available for the estimation of the parameters of 
extreme value distributions. Most of them, for instance the methods of moments 
and of probability-weighted moments, give explicit expressions for the 
parameter estimates. The maximum likelihood (ML) method tends to be the 
preferred estimation method since it is quite general and more flexible than other 
methods, especially when the number of parameters is increased as for instance 
when extending the extreme value approach to account for non-stationarity. 
However, in ordinary extreme value analyses, like the ones we are concerned 
with in this study, the flexibility provided by the ML method is not necessary, 
and for the range of tails typically found with wave data (not too heavy-tailed 
distributions) and for small to moderate sample sizes the method of probability-
weighted moments (PWM) performs better (Hosking et al. [8] and Hosking and 
Wallis [9]). For this reason, PWM was used for parameter estimation in the 
current study. 

3 Operationally-applied distribution 

For the estimation of HBC in 2006, a similar methodology to the one described 
in this paper was applied, but with the use of what is known as the conditional 
Weibull distribution (CWD) for the extrapolation of extreme wave parameters; 
the equation of the CWD is presented in eqn (3). 
 

( ) 1 exp[( ) ( ) ], for ,F x x xα αω σ σ ω= − − ≥ n                      (2) 
 
where ω is the location parameter (threshold), σ is the scale parameter, and α is 
the shape parameter.  
     The choice of the CWD was based on historic usage and followed from 
recommendations by the former Dutch National Institute for Coastal and Marine 
Management (RIKZ). The CWD is principally supported for what is referred to 
as its robustness. That means that for changes in the threshold and variations in 
shape parameter, the changes in the resulting statistics are not terribly sensitive, 
especially compared with the GPD.  
     The genesis of the CWD is based on the assumption that the following 
Weibull distribution represents the parent distribution of the wave parameters.  
 

( )( )( ) 1 exp , ,WF x x x
α
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                        (3) 

 
where ν is the location parameter, σ is the scale parameter, and α is the shape 
parameter. This form of the Weibull distribution is one of the forms of the GEV 
for minima, and falls into a Type I tail type, meaning that there is no upper limit 
to the exceedances. The CWD is the distribution of the exceedances from a 
Weibull distribution above the threshold ω. 
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     There are a couple of criticisms about the use of this model for the estimation 
of extreme statistics. First, the arguments in favour of the CWD were addressed 
and questioned in a report by Caires [10], in which the robustness is criticized as 
a managerial advantage, but not advantageous if the produced statistics are 
incorrect. That is, the choice of a robust model is one of bias over variance. 
Further, the assumption that the (non-truncated) wave parameters follow a single 
distribution is disputed (Ferreira and Guedes Soares [11]). Additionally, the 
Weibull distribution is not a universally appropriate model for describing entire 
sets of wave data; for example, the lognormal distribution is commonly used. 
Lastly, wave parameters are naturally physically limited; this limitation is not 
represented by a Type I tail model, which has no upper limit. 

4 Initial extreme value analysis 

4.1 Data collection for POT analysis 

The measurements that were used in the current study are based on 30 years of 3-
hourly wave data at nine offshore locations in the North Sea (see Figure 1).  
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Figure 1: Dutch offshore measurement stations in the North Sea. 

     The data were continuously collected in records of 10 minutes length. Every 
hour, two 10-minute records were combined to estimate the wave parameters. 
The wave parameters considered in this analysis are the significant wave height 
(Hm0), the mean wave period (Tm-1,0) and the peak wave period (Tp). In the 
current approach, storm peaks above a threshold (the POT sample) are selected 
from the 3-hourly time series in such a way that the sample extracted from the 
original time series can be modelled as independent observations. With wave and 
similar data this is usually done by a process of de-clustering in which only the 
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peak (highest) observations in clusters exceeding a specified threshold are 
retained and, of these, only those which are sufficiently far apart in time (so that 
they belong to more or less independent storms) are considered. Specifically, in 
the current study, cluster maxima at a distance of less than 48 hours apart were 
treated as belonging to the same cluster (storm). Following, a filter was applied 
to compensate for over- and underestimation due to sampling variability 
(Forristall et al. [12]). 

4.2 Choice of threshold 

The threshold stability property mentioned in Section 2.1 was used to choose the 
most appropriate threshold for selecting a sample of peak excesses to which the 
GPD was fitted. More precisely, threshold values were sought around which the 
estimate of the shape parameter showed the least variation.  

 

Figure 2: Schematic showing the behaviour of the shape parameter with 
increasing threshold. The vertical line shows the optimal choice. 

     To reduce subjectivity and retain reproducibility in this process the choice of 
the threshold was automated such that the selected threshold was the lowest that 
resulted in a shape parameter in the stable region (see Figure 2). The stable 
region refers to the range of thresholds that result in a low variance of shape 
parameter for changes in threshold. Note that theoretically there will be two 
stable regions: one that represents the fit to the full set of storm peaks, and a 
second that represents the fit to the extreme of the storm peaks. The latter is 
referred to as the domain of attraction and represents the stable region for the 
optimal threshold; to avoid the selection of thresholds in the first stable region, a 
constraint was applied that thresholds resulting in more than ten storms per year 
were not considered. 
     Once the threshold is selected, fitted GPD parameters for that threshold define 
the initial extreme value statistics at the given station. That is, wave heights and 
wave periods for any return period of interest can be calculated.   
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5 Regional frequency analysis 

The initial extreme value analysis derived GPD fits for each station 
independently. Without the application of a regional frequency analysis (RFA), 
specific outliers at a given location can have too much influence on the statistics 
for that region. Application of RFA uses data at all stations to estimate the GPD 
shape parameter; in doing so, it helps reduce the effect of randomness that is 
inherent in short data sets; RFA is therefore often referred to as ‘trading space for 
time’ (Hosking and Wallis [13]). Because the stations are not from a 
homogeneous region, a modified regional frequency analysis (MRFA) was 
applied which takes into account the local depth and fetch length (Den Heijer et 
al. [14]).  

 

Figure 3: Effect of MRFA on shape parameters. 

     Figure 3 shows that the MRFA results in more spatially consistent patterns of 
shape parameter. Open icons represent ξ values prior to the MRFA; closed icons 
represent ξ values following MRFA. A lower shape parameter translates to a 
higher return value, which is expected in the north, where fetch lengths are much 
longer. The MRFA returns new shape parameters, for each station and wave 
parameter, that will be used in the final extreme value analysis. 

6 Final extreme value analysis 

The final extreme value analysis refers to the final fitting of the GPD. Following 
the MRFA, fixed shape parameters are assigned to each of the wave parameters. 
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Prior to the MRFA, a threshold was selected for which there was an associated 
GPD shape parameter (input to MRFA). Following the MRFA, new thresholds 
must be selected that are associated with the MRFA shape parameters. This is 
done by investigating which thresholds result in a set of POT that leads to the 
MRFA shape parameter; among the possible choices, the threshold which is 
nearest to the original (pre-MRFA) threshold is selected. 
     Once the threshold parameter is selected, the scale parameter can be adjusted 
to fit the GPD with the MRFA shape parameter to the peak excesses above the 
selected threshold. The resulting fit produces the final statistics.  

7 Results 

The results of the initial extreme value analysis are presented in Table 1. Shown 
are the 1/10,000-year return values for the three wave parameters and in 
parentheses the lower and upper bounds on the return values, calculated using 
bootstrap with 1,000 samples. The uncertainties are considerably large, 
principally due to the flexibility in the GPD parameters; specifically that all three 
tail types can be represented by the GPD shape parameter. 

Table 1:  1/10,000-year return values and uncertainty: GPD, pre-MRFA. 

Station  ID Hm0 (m) Tm-1,0 (s) Tp (s) 

SON 10.62 (7.8, 16.14) 15.82 (12.66, 23.58) 20.17 (15.52, 33.38) 
ELD 8.47 (7.23, 10.99) 14.37 (11.65,  21.2) 16.74 (13.48, 25.31) 
K13 9.59 (7.77, 13.45) 16.83 (13.21, 26.23) 18.74 (14.58, 28.02) 
YM6 9.34 (7.17,  14.7) 13.08 ( 11.4, 16.92) 19.27 (14.54, 32.57) 
MPN 7.54 (6.23, 10.02) 12.31 (10.19, 20.98) 14.45 (12.35,    20) 
EUR 7.35 (6.18,  9.95) 10.87 ( 9.46, 14.39) 14.16 (11.41, 21.09) 
LEG 7.89 (6.49,  10.50) 9.98 (  9.2, 11.84) 11.78 (10.66, 14.04) 
SWB 6.36 (5.49,  8.01) 9.58 (  8.9, 11.18) 11.13 (10.19, 13.31) 
SCW 4.75 (4.28,  5.63) 10.11 ( 9.01, 12.61) 13.58 (10.71, 23.52) 

Table 2:  1/10,000-year return values: GPD. 

Station ID Hm0 (m) Tm-1,0 (s) Tp (s) 

SON 10.12 16.02 20.30 
ELD 9.86 14.15 17.72 
K13 9.52 15.19 17.89 
YM6 8.46 13.84 17.03 
MPN 7.20 12.29 15.48 
EUR 7.40 10.79 12.98 
LEG 7.16 10.24 12.45 
SWB 6.20 9.91 11.77 
SCW 5.02 9.91 12.00 
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     The return values resulting from the final extreme value analysis (i.e. 
following the MRFA) are presented in Table 2. The differences between the 
initial and final analyses are sometimes considerable, with maximum differences 
of 1.4m, 1.6s, and 2.2s for wave parameters Hm0, Tm-1,0, and Tp, respectively. 
These differences are all within the uncertainty in the initial estimates. Table 3 
presents the final extreme value analysis using the CWD as well as the difference 
between the CWD and GPD return values. The CWD consistently returns higher 
return values than the GPD. This is because the CWD is a distribution with a 
fixed Type I tail, while the GPD shape parameter tends to a Type III tail for 
wave data. The implications of this are discussed in the next section. 

Table 3:  1/10,000-year return values: CWD and difference between CWD 
and GPD. 

 10-4 Return Values 
CWD 

Change in 10-4 Return Values 
[CWD-GPD] 

Station 
ID Hm0 (m) Tm-1,0 (s) Tp (s) Hm0 (m) Tm-1,0 (s) Tp (s) 

SON 11.71 17.36 21.63 1.59 1.34 1.33 
ELD 11.05 15.05 18.57 1.19 0.90 0.85 
K13 10.67 15.31 18.30 1.15 0.12 0.41 
YM6 9.34 14.53 17.39 0.88 0.69 0.36 
MPN 7.81 12.91 15.96 0.61 0.62 0.48 
EUR 7.77 11.30 13.14 0.37 0.51 0.16 
LEG 7.72 11.18 13.39 0.56 0.94 0.94 
SWB 6.77 10.72 12.56 0.57 0.81 0.79 
SCW 5.46 10.50 12.20 0.44 0.59 0.20 

 

8 Discussion 

The GPD is theoretically the correct distribution for extrapolating POT, 
regardless of the parent distribution of the peaks. However, in practice the GPD 
can be an unattractive choice from a management perspective.  
     The GPD is very flexible; it allows for all three tail types, letting the data 
themselves determine the type. This can be advantageous because in the case of 
wave parameters, they are physically limited. That is, they cannot bypass certain 
physical maxima due to physical constraints, such as depth. The CWD, which 
has a fixed Type I tail, does not have the flexibility to respond to this physical 
information in the data, while the GPD does. The flexibility is less advantageous 
from a management perspective. The choice of threshold can have a substantial 
effect on the return values; this can be perceived as unsettling because the choice 
of threshold is not an exact science and relies on a degree of subjectivity. 
Figure 4 shows the impact that this subjective choice can have on the return 
value. The variation is less extreme in the case of the CWD, largely because the 
tail type is fixed.  
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Figure 4: Sensitivity of 1/10,000-year return value to threshold (example for 
wave parameter Tm-1,0 at station K13). 
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Figure 5: GPD and CWD fits to the same set of POT (example for wave 
parameter Hm0 at station SWB). 

     The CWD returns consistently higher return values than the GPD. This is 
again explained by the fixed Type I tail of the CWD. While the Type III tail is 
understood to better represent the trend of wave data, the large degree of 
uncertainty means that the estimated curvature and the estimated maximum may 
be underestimated. The CWD is less likely to underestimate the return values 
due to its Type I tail, which means that while there is uncertainty around the 
CWD estimate, it is a more conservative estimate. Figure 5 shows a 
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representative example of the difference in the GPD and CWD fits for the same 
set of POT. 

9 Conclusions and recommendations 

The GPD was used to estimate extreme values of wave height and wave period 
at nine offshore measurement stations in the North Sea. The GPD shape 
parameters were subsequently spatially smoothed using a modified regional 
frequency analysis. The GPD was then refitted to a set of POT using the MRFA 
shape parameter. The results of the analysis were compared with those of 
conditional Weibull, which is currently operationally applied in The Netherlands. 
     The GPD consistently returned lower return values, principally due to the 
flexibility in shape parameter compared with the fixed Type I tail of the CWD. 
The fitted GPD parameters and consequently the extrapolated extreme values 
were particularly sensitive to the choice of threshold. An automated method was 
employed for threshold selection based on the anticipated behavior of the GPD 
shape parameter as the threshold approaches the domain of attraction. However, 
for shorter time series this selection method involves much uncertainty, and 
while reproducible, still involves subjective choices and is not an exact science. 
The combined sensitivity of the GPD to threshold and the comparatively low 
extreme value estimates make the application of GPD as carried out in the 
current study an unattractive choice for the case of short time series. 
     Because of how critical the choice of threshold is, further research into the 
selection of the correct threshold is recommended and will be carried out in 
2010. Specifically, formal threshold selection techniques discussed in Einmahl et 
al. [15] will be applied to generated time series to test the applicability, 
especially in the case of shorter time series.  
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