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Abstract 

The maximum annual flood (MAF) series of peak flows have been commonly 
used in the literature to estimate the parameters of a statistical model in order to 
estimate design floods for the proper protection and management of flows during 
extreme events. The use of maximum annual flows restricts the size of the 
available sample to the number of available years of observed flows, and ignores 
the fact that flood events which are not the highest in some years, can be higher 
than the highest flows of other years. The partial duration flood (PDF) series, 
which includes flood events above a specified threshold, has been addressed in 
the literature as a more efficient alternative. A new relation between the return 
periods of the PDF and the MAF series have been derived based on the 
assumption that flood events are independent, without the need to assume that 
their arrival follows a Poisson process. The General Extreme Value (GEV) 
distributions, including the Gumbel as a special case, in addition to the 
Generalized Pareto (GP) distribution have been fitted and applied to the flood 
events of the Tokomairiro River, New Zealand. The use of the PDF series, with 
115 flood events in 21 years, resulted in smoother and more homogeneous series, 
and produced higher design floods than the MAF series. The new derived 
equation for the relation between PDF and annual return periods resulted in 
smaller design floods for return periods up to 10 years, while design floods for 
higher return periods were almost the same as the values obtained from the 
available relation in the literature.    
Keywords: flood frequency, partial duration series, design floods, generalized 
extreme value, Generalized Pareto, extreme flows. 
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1 Introduction 

Estimation of floods corresponding to specified return periods (or a specified 
risk) is essential for the design of flood protection schemes, assessment of 
regions at risk of flooding, and the proper management of flooded regions.  Due 
to high climatic variability, which drives flood events, statistical modelling has 
become widely applied to estimate the magnitude of floods corresponding to a 
specified risk [3, 10, 11].  The two main approaches to select the flood series for 
fitting a statistical model to the observed floods are based on the series for 
maximum annual flows (MAF) or partial duration series of floods (PDF).  The 
MAF series selects the maximum flood event for each year, while the PDF series 
consists of all flood peaks above a specified magnitude.  The MAF approach 
ignores the fact that the highest flows in some years can be lower than flood 
events in other years, and hence it excludes significant high flood events from its 
parameter estimation process.  Moreover, the sample size for the MAF series is 
restricted to the available number of years of observed flows.  On the contrary, 
the PDF series will consider all significant flood events in its parameter 
estimation process and its size can extend far beyond the available years of 
recorded flows.   
     Begueria [1] investigated the impact of the value of the threshold in the PDF 
series on the basic assumption of the model, and proposed a new approach for 
modelling the PDF series based on increasing the threshold value.  However, this 
procedure was based on the assumption that the real data follows the Poisson-GP 
model [1,10], which could not be the case for many flood events.  It is usually 
preferred that one should identify several models, apply and test them to choose 
the best, and not to be restricted to a specified model.   

2 Statistical modelling 

In this research, the focus will be on the Extreme Value and the Generalized 
Pareto distributions, which have been widely applied in the literature for 
modelling extreme flood events [4, 7, 8, 10, 12].  Mckerchar and Pearson [7] 
used the Gumbel distribution, which is a special case of the generalized Extreme 
Value, to produce regional flood frequency contours for New Zealand. 

2.1 Models’ formulation 

The Extreme Value Distribution EV was derived to fit the maximum of a set of 
independent and identically distributed (iid) series of random variables [2, 3, 10].  
The General Extreme Value Distribution GEV can be presented as: 
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where Q is the flood flow, u, α and k are model parameters to be estimated, 
known as location, scale, and shape parameters, respectively.  The scale 
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parameter α is assumed to be positive.  There are three limiting cases for the 
General Extreme Distribution, depending on the value of the shape parameter k:  
     (a) for k=0,  the GEV reduces to the Gumbel distribution with only two 
parameters, the location and scale parameters.  The formula for the Gumbel 
distribution looks different from the GEV equations and is presented as: 
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     The Gumbel quantile QT corresponding to a return period T can be estimated 
from (2) as: 
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     The moments of the Gumbel distribution are: 
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     (b) For k < 0 the distribution is known as the Extreme Value Type II 
distribution EVII, which has a lower limit at u + α/k. 
     (c) For k>0 the distribution is known as the Extreme Value Type III 
distribution EVIII, which has an upper limit at u + α/k. 
     The quantile for the GEV (type II or III) is: 
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     The moments for the GEV types II and III distributions are as follows: 
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     The Generalized Pareto distribution (GP) was derived to fit values above a 
threshold, such as floods above a defined value [5, 10].  For the case when the 
shape parameter k< 0, the GP distribution has a lower limit at u, while for the 
case when k>0, it has an upper limit at u + α/k, in addition to the lower limit at u.   
The GP is described by the following formula: 
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           for k>0 and u ≤ Q ≤ u + α/k  (5) 
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     The GP quantile, corresponding to a return period T is: 
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     The moments for the GP distribution are as follows: 
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2.2 Parameters estimation 

There are a variety of methods to estimate the parameters of a statistical model.  
Among these tentative approaches are the method of moments MOM, maximum 
likelihood method ML, least squares LS, and the L moments [2, 10].  The most 
efficient approach for parameter estimation for a specified model should be 
applied.  The efficiency of an estimator θ̂  of a parameter θ is measured by its 
mean square error: 

[ ] [ ]( )22
ˆ

2 ˆ)ˆ( θθσθθ
θ

−+=− EE , 
which equals the variance of the estimator added to the square of the bias.      
     The method of moments can produce efficient estimators for some models, 
such as the Normal distribution and the autoregressive time series models, but it 
fails to produce efficient parameter for many other models.  The method of 
maximum likelihood is accepted to provide efficient estimators [2, 10].  
However, in many cases, it is hard to derive simple forms for the ML estimators, 
and numerical techniques have to be applied to estimate them.  The method of L-
moments, which is based on the probability weighted moments, provides 
sufficiently efficient estimators and usually it is simple to derive their formulae 
[7,10,13].  Estimators of the L-moments for a sample are linear combinations of 
the ranked observations.  In the case of flood events, this procedure would be 
preferable as it is related to the probability of exeedence of the flood event.  In 
addition, L-moments estimators are almost unbiased and are not significantly 
affected by outliers, [10, 13].    
     The following presents the first and second L-moments for the Gumbel, GEV 
and GP distributions, and for higher order L-moments refer to Stedinger et 
al. [11]: 
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     L-moments from the sample are substituted in their corresponding formulas 
for each model to obtain a system of simultaneous equations which can be solved 
to obtain the model’s parameters. 

2.3 Relation between the return period of the MAF and the PDF 

The return period T corresponding to a flood obtained by using the quantile 
equations 3, 4 and 6, with the MAF series, will correspond to an annual return 
period (in years).  However, using the PDF series, with flood events (NF) more 
than the available years of record (NY), will yield a different return period from 
the commonly known annual one.  Assume that the commonly known annual 
return period is TA, while the one corresponding to the PDF series is TP.  The 
ratio between flood events used in the PDF series and the available years of 
record, which is the same as the flood events used in the MAF series, is called 

the arrival rate and can be estimated from  
Y

F

N
N

=β , where β ≥ 1.  The arrival 

rate β is the average flood events per year in a PDF series.  For β > 1.65, the 
application of partial duration series, assuming Poisson arrival with the 
exponential model for exceedance probability, should produce more reliable 
estimates for the quantiles of design floods corresponding to specified return 
periods, [9–11].  Stedinger et al. [11], assuming a Poisson distribution for floods 
between the threshold value Q0 and a flood value Q, where Q ≥ Q0, in one year 
period, presented the following relation between TA and TP: 
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     However, this equation is based on the assumption that the arrival rate 
follows a Poisson distribution, which might not be the case for many flood 
events.   
     Another formula, which only requires the independence of flood events will 
be derived and presented herein.  Assuming that flood events of the PDF series 
are independent, the probability of getting exactly one event every year, out of β  
events, for the case when β is integer, can be derived from the Binomial 
distribution as follows: 
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where pA is the annual exceedance probability = 1/TA, and pP is the exceedance 
probability for the PDF series =1/TP.  In general, the return period of design 
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floods obtained from the PDF series, in years (similar to the one obtained from 
the MAF series), can be obtained from the PDF return periods as follows: 

1)11)(1(1 −−= ββ
PPA TTT

     (9) 

     Equation (9) does not require the average arrival rate of flood events to follow 
the Poisson distribution, and should be applicable to any value of β. 

3 Applications to the Tokomairiro flood events 

The Tokomairiro River at its West Branch site, in Milton south of Dunedin, New 
Zealand has been selected for this study.  The record period for this site extends 
during the period 1962 to 2002.  Gauging of flows at this site was carried out 
during low and high flows, which would incur higher reliability in its rating 
curve, and in turn in the estimated flows from the river stage.  The catchment 
area upstream of the gauge site on the West Branch is 69.55 km2, while the 
whole catchment of the Tokomairiro River, including the East Branch, up to its 
mouth at the Pacific Ocean is 393.9 km2.   
     Figure 1 shows the cumulative probability distributions for observed floods of 
the Tokomairiro River by using both the maximum annual 21 floods and the 
highest 115 independent flood events in the available 21 years of record.  The 
figure shows the inconsistency and sudden changes in the maximum annual 
series, which is expected to have its impact on the quality and accuracy of the 
fitted statistical model.  To the contrary, the plot of the highest 115 flood events 
is smoother and shows consistency which is expected in the population process 
from which these flood events are produced.  It should be noted that the same 
flood event will have different cumulative probability in the PDF from the MAF 
due to its calculation based on 115 events instead of 21 in the latter approach.  
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Figure 1: Cumulative distributions for the observed MAF and PDF series. 
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     Figure 2 and Table 1 present the flood histogram and the results for model 
testing for the 3 models fitted to the MAF series.  Despite that the Kolmogorov 
Smirnov and the Chi2 tests accept the three models, the histogram and the 
Philliben correlation coefficient strongly recommend the GEV distribution.  
Moreover, the calculated statistic for the Chi2 test for the GEV distribution is 
significantly lower than its corresponding values for the Gumbel and GP 
distributions. 
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Figure 2: Floods histograms for models fitted to the MAF series. 

Table 1:  Model testing for models fitted to the MAF series. 

Test Model Gumbel GEV GM 
Kolmogorov Smirnov Calculated 

Value 0.12 0.13 0.14 
 Tabulated 

Value 0.284 0.284 0.284 
 Model Accepted Accepted Accepted 
Chi2  Calculated 

Value 2.97 1.67 2.71 
 Tabulated 

Value 9.5 7.82 7.82 
 Model Accepted Accepted Accepted 
Filliben Correlation 
Coefficient 

 
0.93 0.95 0.94 

 
     Figure 3 and Table 2 present the same above mentioned results, but for the 
PDF series containing 115 independent flood events observed during the record 
period of 21 years. The histogram shown in Fig. 3 recommends the GP model, 
which is further supported by the testing results of Table 2.  It is noted that the 
GEV was the favourable distribution given the MAF series, while the GP has 
become the preferred model based on the PDS of 115 flood events.  Moreover, 
the Gumbel distribution has been rejected in the PDS modelling process, while it 
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was accepted, still not preferred, when the MAF series was considered in the 
modelling process.   
     Equation 9, to estimate the design return period in years for design floods of 
PDF series, yielded smaller values for the design floods corresponding to return 
periods of up to 10 years compared to the use of Eq. 8.  However, this difference 
was small, and has become insignificant when higher return periods were 
considered.  For instance, the 5 year flood event from a GP model was 39.23 
m3/s by using Eq. 9, while it was 40.66 m3/s if Eq. 8 was used instead. 
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Figure 3: Flood histograms for models fitted to the PDS series of 115 events. 

Table 2:  Model testing for models fitted to the PDS series of 115 events. 

Test Model Gumbel GEV GM 
Kolmogorov Smirnov Calculated 

Value 0.172108 8.60E-02 5.39E-02 
 Tabulated 

Value 0.126821 0.126821 0.126821 
 Model Rejected Accepted Accepted 
Chi2  Calculated 

Value 14.83837 6.361572 3.307905 
 Tabulated 

Value 9.5 7.82 7.82 
 Model Rejected Accepted Accepted 
Filliben Correlation 
Coefficient 

 
0.898605 0.984218 0.980359 

 
     Figure 4 presents design flood events for the 50 year return period 
corresponding to the MAF series, and 6 alternatives for selecting the PDF series, 
by considering the 21, 42, 63, 84, 105 and 115 highest flood events.  The use of 
PDF with 115 highest flood events to fit a GP model yielded a quite higher 50 
year flood event (98 m3/s) compared with the use of the MAF series with only 21 
values to fit the same model (85.4 m3/s), as shown in Fig. 4.  In general, the 
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magnitudes of design flood events were higher with increasing the size of the 
flood events sample in the PDF series.   

4 Conclusions 

This research stresses the need to implement the use of partial duration series for 
the estimation of design floods.  Partial duration series produced more 
homogeneous and smoother series, which is expected to result in a more robust 
model fitting.  The choice of PDS with 115 flood events, much more than the 
available 21 years of observed record, not only resulted in a higher design floods, 
but also resulted in the choice of a different model to fit the flood series.  In 
addition, the derived equation to transform return periods of PDS to their 
corresponding annual return periods resulted in smaller values for the design 
floods compared to the relation available in the literature.  However, more 
research is still needed to identify the lower threshold above which independent 
flood events are selected.   
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Figure 4: 50 year design floods for models fitted to the MAF and PDS series. 
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