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Abstract 

Forest fire management is not only an emergency task, the preventive task could 
be even more important, being better to avoid the risk of a forest fire ignition 
before it starts or minimize its hazard, rather than later trying to extinguish it. If 
we associate wildfires with their spatial coordinates, along with other variables, 
it is possible to identify them by means of a spatio-temporal stochastic process. 
Spatio-temporal clustering of wildfires could indicate the presence of risk 
factors. In fact, what is usually of interest is to assess their dependence on 
covariates. Two were the objectives in this paper. Firstly, to evaluate how the 
extent of clustering in wildfires differs across marks. Secondly, to analyze the 
influence of covariates on trends in the intensity of wildfire locations. We 
analyzed the spatio-temporal patterns produced by wildfire incidences in 
Catalonia, located in the north-east of the Iberian Peninsula. The total number of 
fires recorded in the studied area, during the period 1994–2008, was 10,783. In 
addition to the locations of the fire centroids, several marks and spatial 
covariates were considered. We specified spatio-temporal log-Gaussian Cox 
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process models. Models were estimated using Bayesian inference for Gaussian 
Markov Random Field (GMRF) through the Integrated Nested Laplace 
Approximation (INLA) algorithm. The results allow us to quantify and assess 
possible spatial relationships between the distribution of risk of ignition and 
possible explanatory factors. We believe the methods shown in the paper may 
contribute to the prevention and management of wildfires, which are not random 
in space or time. 
Keywords: wildfire, spatio-temporal point processes, marks, covariates, log-
Gaussian Cox models, GMRF, INLA. 

1 Introduction 

Forest fires are now the main cause of forest destruction in the countries of the 
Mediterranean basin causing enormous economic and ecological damage as well 
as loss of human life. Fire risk is seriously important in the Mediterranean region 
due to its marked seasonality, with high temperatures and low humidity in 
prolonged summers (extending from June to October and sometimes even 
longer). These extreme conditions allow even a small heat source (lightning, a 
spark, match, a cigarette butt) to set off a violent and dangerous fire. Together 
with the heat and lack of humidity of this season, the inland summer winds, 
characterized by its great speed and strong desiccant power, such as Tramuntana 
in Catalonia, help spread the fires, transporting them quickly from one place to 
another. Also dry and cold winds of winter increase the danger of fire [1]. 
     Weather conditions determine the composition of Mediterranean forests. For 
this reason, due to the prolonged summer droughts, most of these forests have 
stabilized based on species that need fire during their reproductive cycle. Pine 
forests are large masses on both sides, north and south of the Mediterranean. In 
particular, the Aleppo pine (Pinus halepensis) is the most widespread on the 
coasts of Spain, France, Italy, Greece, Turkey, Morocco, Algeria and Tunisia. 
These species are characterized by physiological mechanisms that connect 
natural reproduction with fire, for example the opening of the cones by the 
intense heat. These species may also have a high content of resin and essential 
oils, extremely flammable [1].  
     In the particular case of Catalonia, a region located in the northeast of the 
Iberian Peninsula which represents 6.4% of the Spanish national territory, it is 
necessary to take into account that there is also an important process of 
afforestation of the different agricultural areas as well as an increase of the 
abandonment of rural activities. For everything, Catalonia is in a situation of 
extreme vulnerability to the risk of fires.  
     Forest fires management is not only an emergency task, the preventive task 
could be even more important, being better avoid risk of a forest fire ignition 
before it start or minimize its hazard, rather than later try to extinguish it.  
     If we associate wildfires with their spatial coordinates, along with other 
variables, it is possible to identify them by means of a spatio-temporal stochastic 
process. Spatio-temporal clustering of wildfires could indicate the presence of 
risk factors. In fact, what is usually of interest is to assess their dependence on 
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covariates. The problem here is that our data set did not have the structure of the 
classical point pattern, i.e. a regular lattice [2], but it was very complicated to 
deal with using standard methods. Log Gaussian Cox processes (LGCP) are a 
class of flexible models that are particularly useful in the context of modelling 
aggregation relative to some underlying unobserved environmental field [2 4]. 
Recently [4], a flexible framework for fitting complicated LGCPs using 
integrated nested Laplace approximation (INLA) [5] was developed. This 
approach, however, is still based on a regular lattice. Although, this leads to 
consistent estimates, if the lattice is fine enough and appropriately discretised 
[6], could be very inefficient, especially when the intensity of the process is high 
or the observation window is large or, as in the case of wildfires, typically oddly 
shaped [2]. In this paper we tried another more computationally efficient 
approach based on the stochastic partial differential equation (SPDE) models [7]. 
On one hand, we used SPDE to transform the initial Gaussian Field (GF) to a 
Gaussian Markov Random Random Field (GMRF). GMRFs are defined by 
sparse matrices that allow for computationally effective numerically methods. 
Furthermore using Bayesian inference for GMRFs, it was possible to adopt the 
INLA algorithm that gives significant computational advantages [5]. On the 
other, following that approach [2], the specification of the Gaussian random field 
was completely separated from the approximation of the LGCP likelihood, 
leading, again, to far greater flexibility. 

2 Methods 

2.1 Data setting 

The total number of fires recorded in the study area during the period 1994-2008 
was 10,783. In addition to the locations of the fire centroids, measured in 
Cartesian coordinates (Mercator transversal projections, UTM, Datum ETRS89, 
zone 31-N), several marks and covariates were considered. Variables measured 
only at fire locations are called marks. In this paper, marks included the year the 
wildfire occurred (from 1994 to 2008) and the buffer to the wildfire belonged. 
Spatial covariates were also considered. In particular, eight continuous covariates 
(topographic variables – slope, aspect and hill shade –  proximity to human 
populations – urban area –  proximity to concomitants of human activity – roads 
and railroads –  meteorological variables – maximum and minimum 
temperatures); and one categorical variable (land use).  
     Slope was the steepness or degree of incline of a surface. Slope cannot be 
directly computed from elevation points; one must first create either a raster or 
TIN surface. In this article, the slope for a particular location was computed as 
the maximum rate of change of elevation between that location and its 
surroundings. Slope was expressed in degrees. Aspect was the orientation of the 
slope, measured clockwise in degrees from 0 to 360, where 0 is north-facing, 90 
is east-facing, 180 is south-facing, and 270 is west-facing. Hill shading is a 
technique used to visualize terrain as shaded relief, illuminating it with a 
hypothetical light source. Here, the illumination value for each raster cell was 
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determined by its orientation to the light source, which, in turn, was based on 
slope and aspect.  
     The distance from the location of the wildfire to urban areas and to roads and 
railroads were constructed considering a geographical layer in each case. On the 
layer analyzed we used the function Euclidian distance included in the 
application Spatial Analyst of ArcGis10 in order to get two new layers called 
distance-area and distance-roads depending on the case. These layers were 
continuous and they were defined as a raster layer.  
     We also used land use maps (1:250 000) of Catalonia (32 000 Km2) using 
classification techniques applied on existing LANDSAT MSS images on four 
different years (1992, 1997, 2002 and 2010). In particular, we assigned the land 
use map just before the date of each wildfire. In this paper we reclassified land 
use into twenty-two categories: outside the scope of Catalonia; continental water; 
seawater; place exposed to blizzards; road infrastructures; suburbs; downtowns; 
industrial and commercial areas; herbaceous dry-farmed; herbaceous irrigated 
crops; dry fruit; irrigated fruit; vineyard; alpine meadows; transitional wood-land 
shrubs; sclerophyllus vegetation; deciduous forest; coniferous forest; wetlands 
vegetation; soil with little or no vegetation; burned areas; and sandy areas and 
beaches. 
     We also included the temperatures (maximum and minimum) that occurred in 
the location of the wildfire, up to seven days before the occurrence of the same. 
The estimation of the temperature at the point and from the previous day to a 
week before, of the occurrence of the wildfire was done by a two-step Bayesian 
model. Further details can be found elsewhere [8]. 

2.2 Buffer construction 

Instead of constructing a fine regular lattice, we constructed an irregular grid 
using buffers. In particular, for each wildfire we constructed a buffer considering 
a distance of 1,500 meters from the centroid. Initially we had a lot of buffers, 
fortunately many of them overlapping. Therefore, we were overlaying ‘layers’ of 
buffers, from the first layer where no buffer was overlapped to the last with the 
maximum number of overlaps, so that, ultimately, ‘cells’ (the final group of 
buffers) did not overlap and a wildfire belonged to only one of the ‘cells’. 
Finally, we took this last, as our layer, with a total of 3,782 ‘cells’ (6.65 wildfires 
per cell on average, standard deviation: 61.17; median: 1; first quartile: 1; third 
quartile: 4). Note that we did not have a regular lattice, but a very irregular one. 

2.3 Statistical model 

Let Njt denote the observed number of wildfires in specific cell sj, j=1,…,3,782. 
and year t (t= 1994,…,2008). As a consequence of the definition of the LGCP, 
Njt may be considered as an independent Poisson random variable [2], 
 
  jtjt PoissonN ~  (1) 
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     The problem is that the total intensity in each cell, jt, was impossible to 

compute and we used instead the approximation,   expjt j jt js s  ; where 

 jt js  was a ‘representative value’ [2] within the cell and js  the area of the 

cell sj. 
     This approximation, allowed us to describe the log-intensity of the Poisson 
processes by a linear predictor [4]: 
 

     jttjitjtjjijt SzEsps 


   ,log  (2) 

 

     Note that we specified our LGCP with some special features. First, we 
specified a spatio-temporal mixed model with two levels, the wildfire, with 
subscript i (i=1,…,10,783); and the cell to which the wildfire belonged, with 
subscript j (j=1,…,3,782). In addition, the subscript t (t=1994,…,2008) denoted 
the year of occurrence of the wildfire.  
     Second, we included in the model (2), as an offset, the expected number of 
wildfires in cell j (and year t), Espjt. We constructed this variable as a draw (one 
per cell) from a Poisson distribution with mean equal to the average of wildfires 
per cell in the year t. In fact we were not interested in the (predicted) number of 
wildfires per cell and year or in the effect of covariates on the (predicted) number 
of wildfires but, in the relative risk (RR) of wildfires per cell and year and in the 
effect of covariates on such relative risk. That is to say, if the risk of occurrence 
of a wildfire was higher (RR>1), equal to (RR=1) or less (RR<1) than expected.  
     Third, note that we included only spatial covariates, z,it, as explanatory 
variables of the relative risk of a wildfire. That is to say, all covariates were 
included at the level of the wildfire, not the cell (notice that the subscript was i). 
 denoted (unknown) parameters associated to covariates. With the exception of 
temperatures (both, maximum and minimum), we introduced all covariates in 
quintiles, allowing for a non-linear effect of them on relative risk. 
     Fourth, we introduced in (2) four random effects: i) heterogeneity: i.e. jt, 
accounting for variation in relative risk across different cells; ii) spatial 
dependence: Sj; iii) temporal dependence: t and; iv) spatio-temporal interaction:  
 

jt. Note that we assume separability between spatial and temporal patterns and, 
at best, allow interaction between the two components. 
     The heterogeneity was specified as a vector of independent and Gaussian 
distributed random variable on j, with constant precision [9]. 
     For the spatial covariance structure we used the Matérn family of covariance 
functions and a nugget term, over j.  
 

        '1,,,',cov 2222
' jjIrrjjjj    (3) 

 

     M was the Matérn function [10]; I2  denoted the sill (the total variance of 

the innovation process); 22r  was the variance of the spatially correlation 

portion of the process;  2 21 r  corresponded to the nugget (the variability 

unique to a given station);  was the range of the process (the size of the region 
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where the process was significantly correlated); and  was the smoothness of the 
process (specifically, we tried =1,2,3 the only available values for the model 
for the time being, R-INLA project [11]). 
     Both the temporal dependence (on t) and the spatio-temporal interaction (on j 
and t) we assumed smoothed functions, in particular random walks of  
order 1 [9]. 
     All the analyses were carried out with the R freeware statistical package 
(version 2.14.1) [12] and the R-INLA package [11].  

3 Results 

In Figures 1 and 2 we show some scatter plots of the number of wildfires per cell 
on the continuous covariates. With respect to topographic variables (Figure 1), it 
seems that the higher slope greater number of wildfires. The number of fires was 
also higher when hill shade between 150 and 200, approximately. It seems that 
there was not relationship between aspect and the number of wildfires per cell. A 
shorter distance from both, urban areas and roads-railways, greater number of 
wildfires per cell (less distance for roads and railways).  
     At higher (maximum and minimum) temperatures, on average, in the 
preceding days (until a week before) greater number of wildfires per cell. In this 
later case, however, the dispersion was very high. 
 
 

Table 1:  Results of the estimation. Statistically significant fixed effects. 

Fixed effects Relative risk 95% credible interval 

Hill shade   

Q1  <159 0.71497 0.57037 0.91228 

Q3   173-180 0.77538 0.61917 0.98865 

Q4   180-189 0.77712 0.62005 0.99151 

Q5  >189 0.76306 0.60806 0.97435 

Aspect   

Q4   201-266 1.04736 1.00857 1.08719 

Q5  >266 1.05272 1.00305 1.10412 

Slope   

Q3   5-8 0.93666 0.90460 0.96944 

Q4   8-13 1.04221 1.00283 1.08264 

Maximum temperature   

Sixth previous day 1.05061 1.01454 1.08752 

Seventh previous day 1.04171 1.01262 1.07017 

Minimum temperature   

Second previous day 1.04248 1.01613 1.06937 

Fourth previous day 1.02908 1.00404 1.05465 
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Table 2:  Results of the estimation random effects. 

Random effects Mean (standard deviation) 

Heterogeneity (variance) 0.40370 (0.00977) 

Temporal dependency  (variance) 0.14505 (0.02932) 

Spatial dependency  
Range 80.060 (115.706) 

Variance 0.00685 

Interaction (variance) 0.37342 (0.02853) 
 
 
 
 
 

     Results of the estimation of model (2) are shown in Tables 1 and 2. In Table 1 
we show the estimated fixed effects that resulted statistically significant, that is 
to say, the credible interval for relative risks did not contain the unity.  
     Note that the greater the shadow the lower the relative risk of a wildfire in a 
cell (RR ranged from 22% to 31% lower than in the second quintile, which was 
not statistically significant). With respect to aspect, the relative risk of a wildfire 
was 4.7–5.2% higher than in the third first quintiles. Slopes from 5–8% led to 
4% less of risk, whereas from 8-13% implied 4.2% more risk. With respect to the 
temperatures of the previous days, in both cases, maximum and minimum, 
greater temperature implied more risk, although the risk was higher and farthest 
for maximum temperature than for minimum temperature. 
     With respect to the random effects, note that it seems that the importance of 
the heterogeneity and the interaction random effects were more important than 
the spatial dependency random effect. However, note that the range (distance at 
which the spatial correlation becomes equal to 0.1) was estimated in 80 km. 
Temporal dependency was also important. 
     In Figure 3 we show the effect on relative risk of the temporal dependency. 
Note that, in general, the effect has been growing until 2005, decreasing 
thereafter. 
 
 
 

 

Figure 3: Effect of the temporal dependency on relative risk of wildfire.
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     In Figure 4, finally, we show the relative risks of wildfires (on selected years). 
Note that the risk was higher than expected only in some areas, particularly, in 
1994 and in the central part of Catalonia in 2008. 
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