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Abstract 

Infrared (IR) imaging is a standard technique in forest fire detection. In previous 
works we have shown that it can be used to classify the fire scene into regions 
(of embers, flame, fire front, etc). However, this requires multi-spectral images 
and a complex post-processing. In this paper we show that a less precise but still 
powerful classification of fire scenes, for distances in the range of hundreds of 
meters, can be done with a much simpler procedure. A fire index is obtained 
from bi-spectral images in the medium IR with an extremely simple processing 
that can be performed in real time. This makes it possible to aid the decision 
makers in forest fighting, by locating the fire front and the places of fire  
re-ignitions, and by indicating flame heights. Images of a prescribed forest fire 
obtained in a field campaign have been analyzed to define and validate 
experimentally the fire index. Comparison with the results of classification by 
post-processing of multi-spectral images shows a good degree of agreement, 
demonstrating the effectiveness of the fire-index approach.  
Keywords: infrared, bi-spectral, forest fires, monitoring. 

1 Introduction 

Infrared (IR) sensors are already commonplace in forest fire related applications 
[1]. Satellites have become standard for fire danger estimation, mapping of 
burned areas and follow-up of after-fire recovery, and ground-based platforms 
are used in many places to provide early fire detection. However, the 
potentialities of IR for fire monitoring and characterization have not been fully  
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realized yet. The very intensity of fire IR emission makes it difficult sometimes 
to obtain unsaturated images, and most IR cameras are used simply to “see the 
fire” without a radiometric calibration that would greatly enhance the 
information they provide. 
     Moreover, when trying to obtain quantitative measurements, even a calibrated 
camera faces non-trivial difficulties, which stem from the very nature of forest 
fires: complex targets that change with time, with several different regions 
(flames, fire front, embers…) whose spectral emission profiles may be very 
different from that of a blackbody. Fires, in addition, are usually observed from 
long distances, and each region, with a different spectral profile, is affected by 
atmospheric absorption in a different way. Therefore, measured radiances may 
be quite different from those emitted, and, in particular, apparent temperatures 
may differ strongly from the real ones, even for a perfectly calibrated camera.  
     In previous works, a scene analysis was performed using multi-spectral 
images that made possible to distinguish between fire regions (“classes”) [2]. 
This classification allows to take into account the different spectral emission 
profiles of the regions and consequently to take full advantage from camera 
calibration. To obtain physical magnitudes, like embers temperature or radiated 
power, becomes thus possible [3].  
     However, this scene analysis is a relatively complex process, which can only 
be made with a post-processing of the IR sequences of images acquired during 
the burn. It is very useful for fire studies, but it does not improve fire monitoring. 
What is needed to help forest fire fighting is a tool that can be operated in real 
time. To this end, only a schematic scene analysis is necessary, in order to 
distinguish hot embers from active fire areas (fire front and re-ignition places) 
and, if possibly, to give an indication of flame height.  
     In this work we show that this can be done with a medium IR bi-spectral 
system and an extremely simple processing, thus making it possible to operate in 
real time. The method is applied to a field test burn of a suppression fire, and is 
validated by comparison with the results of the full post-processing method 
applied to a multi-spectral 3-band system. 

2 Classification of IR multi-spectral forest fire images 

The problem of classifying a fire scene, i.e., of assigning each pixel to a 
meaningful “class” previously determined (for instance, fire front, embers, 
flames, or background) can be solved along the lines well established in the field 
of satellite remote sensing, where multi-spectral images are used to make 
“thematic maps” of land use, assigning each pixel to a specific class (for 
instance, water, sand, urban areas or specific crops).  
     In the standard form used in satellite remote sensing, this process involves an 
algorithm called “classifier”.  Pixels in an image that are known to correspond to 
specific regions in the “ground truth” are designated as pure representatives of 
that class (usually called “endmembers”). For an n-band multispectral system, a  
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pixel can be visualized as a point in an n-dimensional “multispectral space”. An 
image translates into an n-dimensional scatterplot: a cloud of points, one for each 
pixel, where pixels of similar spectral composition are neighbors. Points 
corresponding to the endmembers are fed to the algorithm in a process that is 
called “training the classifier” [4]. After training, the classifier runs over all the 
pixels of the image and assigns each of them to the class whose endmembers are 
more similar to it, according to some specific criteria. This process is tedious 
since it generally requires a lot of ground truth images to train the algorithm, in 
particular when the dimensionality of the data (number of bands) grows. 
     In previous works [2] we demonstrated that, for fires observed at short 
distances (a few meters), this method can be simplified by using only two bands 
in the medium infrared, one at the CO2 emission band near 4.26 m and other 
outside it. For these bi-spectral images, the multispectral space reduces to a 2-
dimensional space, and the scatterplot is simply a 2D graph where each axis 
corresponds to the radiance in one band, and the spectral composition of each 
pixel can be appreciated visually. Pixels that clearly correspond to specific 
regions, like embers or flames, can be identified on the scatterplot and selected 
as the endmembers for that class. The classifier assigns then the rest of the pixels 
to a class, in our case, by a maximum likelihood criterion.  
     This method of “classification on the scatterplot” simplifies greatly the 
process, since no ground truth images are needed. This simplification is possible 
because of the large contrast in the spectral composition of “flame” and 
“embers” regions, due to the strong CO2 emission band. However, as distance 
increases, the atmospheric CO2 absorbs this band, and classification becomes 
more difficult. “Classification on the scatterplot” techniques applied to direct 
images don’t work well for fires at distances of hundreds of meters [5]. The 
obvious way out of this difficulty would be to use more bands, but this means, in 
principle, to use the full process of classifier training. This would be a tiresome 
work with uncertain results, because fires are not standard targets, and a large 
array of multispectral images with well-defined endmembers is not available.  
     Fortunately, classification on the scatterplot can still be feasible by applying a 
technique called Principal Component Analysis (PCA) to the original 
multispectral data. This is a standard method of image processing [4] that 
produces uncorrelated bands by making linear combinations of the often highly 
correlated original multispectral bands. Each combination is a “principal 
component” and there are as many PC bands as original bands. The 
transformation is in fact a translation in multi-spectral space that takes the origin 
to the center of mass of the cloud of points, followed by a rotation in such a way 
to obtain a diagonal covariance matrix, i.e., in order to orientate the coordinate 
axes of the space along the main axes of the cloud. This means that the PC 
images are uncorrelated. In addition, PCs are ordered by decreasing eigenvalue 
of the covariance matrix, i.e., PC1 has the larger variance, PC2 the second largest 
variance, and so on. This means that most of the information is contained in the 
first PC bands. 
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     Therefore, when working with multi-spectral images, it may be wise to 
perform a PCA and retain only the first PC bands. This strategy applied to three-
band images of experimental field burns has made possible classification using 
the PC2 vs. PC1 scatterplot up to at least 550 m of distance [5].  
     Although this method is simple as compared to standard classification 
techniques, it still requires a lot of computational load, since PCs have to be 
calculated for each frame, and the endmembers have to be identified manually on 
the scatterplot. Therefore, it cannot be performed in real time. This, in practice, is 
not an important problem when the aim is to obtain physical parameters like 
radiated power, since this processing is inherently complex: in addition to 
classification, images must be geo-referenced and an area must be assigned to 
each pixel. However, real time operation would be a very convenient feature to 
aid in forest fire fighting and suppression. A feasible system for real time 
operation must use as few bands as possible and keep processing extremely 
simple. In particular: 
 

 Standard classification techniques, which train the classifier with well-
known points in the ground truth, are prohibitively complex. 

 

 PCA should not be used, since the coefficients of the linear 
combinations making up the PCs must be recalculated at each frame.  

 

 Simple “classification on the scatterplot” methods are not feasible, since 
they require to draw a scatterplot and to identify clusters for each frame. 

     The simplest approach is to use only two bands and define a fixed 
combination of them as a “Fire Index”, in a similar spirit to the well-known 
Normalized Difference Vegetation Index. In the following sections we explore 
this approach, comparing the results of the full 3-band maximum likelihood 
classification with those of the simple Fire Index-based processing defined here.  

3 Experimental measurements 

Field measurements have been performed on a prescribed suppression fire on an 
82 m x 135 m scrubland plot. The test was conducted and instrumented by 
CIFAL-LOURIZAN, within the framework of the Fire Paradox research project. 
     The fire was monitored from a distance of about 480 m with several imaging 
systems (figure 1): a bi-spectral system in the medium (MIR) and thermal (TIR) 
infrared regions; a high speed MIR camera that allows to combine several 
integration times to increase dynamic range without saturation, and a MIR 
multispectral system with a rotating four filter wheel. The fire was registered 
also with a standard video camera in the visible region as a reference. Figure 2 
shows an example of simultaneous visible-MIR images. 
     In this work we study the IR images acquired with the multispectral MIR 
system. We only have used tree filters with wavelengths centered at: F2 = 3.7 
m, F3 = 4.0 m and F4 = 4.7 m, and a width at half maximum of about  
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Figure 1: Imaging systems used in the test fire. From left to right, high-speed 
MIR camera, MIR multispectral system, MIR camera (with visible 
video camera on top) and TIR camera. The last two cameras 
integrate a MIR-TIR bi-spectral system. 

 

Figure 2: Two simultaneous images of the fire: visible (left) and 4.7 m IR 
band (right). 

400 nm. Position F1 was reserved to acquire in the entire MIR region, but it was 
not used to avoid saturation (the high-speed MIR camera images were used 
instead). The choice of these three filters is motivated by the spectral profile of 
CO2, the main emitter of combustions in the MIR band. The strong emission 
band centered at 4.26 m is divided by atmospheric absorption in two spikes: a 
narrow “blue” spike at short wavelengths and a wide “red” spike at long 
wavelengths. Filter F4 is centered at the longest wavelength region of the red 
spike, where atmospheric CO2 absorption is presumably small; F3 filter is 
centered at the blue spike, and F2 is outside the CO2 band. 

4 Processing  

A sequence of 20 images (one each 5 minutes) of the experimental burn 
described in the previous section was classified as explained in section 2. For  
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Figure 3: Top row: PC1 (left) and PC2 (right) for a typical frame during the 
burn. Middle row: PC2 versus PC1 scatterplot of the previous 
images with endmembers marked (left); position of endmembers on 
the image (right). Bottom row: Result of the classification on the 
scatterplot and on the image. The regions are: embers (green), fire 
front (yellow), flame (red) and background (blue) (color online 
only). 
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each frame, a PC analysis was performed; clusters for the endmembers of the 
different classes were identified on the PC2 vs. PC1 scatterplot and a maximum 
likelihood algorithm was used to assign the rest of the pixels to a specific class. 
     Figure 3 shows this process applied to a specific frame, number 3. In the top 
row, the first two principal components are shown. Their expression as 
combinations of the filters is:  

PC1 = 0.698*f2 + 0.514*f3 + 0.498*f4 
PC2 = 0.328*f2 + 0.389*f3  0.861*f4 

where f2, f3, f4 stand for the digital number values of the F2, F3, F4 filters with 
their respective averages subtracted (so that over the image f2, f3 and f4 average 
to zero). Clearly, PC1 (shown at left) is a kind of mean of the three bands, 
measuring the overall IR brightness. PC2 (shown at right) adds the contributions 
of F2 and F3 but subtracts, with a larger weight, the contribution of F4. Since 
this filter collects the contribution of CO2, flames appear with negative values 
(black in the image). 
     In the middle row of Figure 3, the PC2 vs. PC1 scatterplot is shown at left, 
with regions selected as endmembers: green for embers, red for flames, yellow 
for fire front (flaming embers) and blue for background. The right-hand image 
shows the location of the endmembers on the image. The result of a 
classification performed with those endmembers is shown on the bottom row of 
Figure 2. Each pixel has been assigned to the most similar class, in a maximum 
likelihood sense; at left it is shown the classified scatterplot; at right, the 
classified image. This process is repeated for each frame to obtain the classified 
images. We call this procedure Maximum Likelihood Three-Band (ML3B) 
classification.  
     Classification can be simplified if the linear combinations that give the PCs 
do not change very much as the fire evolves. This is indeed the case, as shown 
by figure 4 (top row), which shows the weights of PC1 and PC2 on the three 
filters along the burn. In addition, it is clear that filters F2 (3.7 m) and F3 (4.0 
m) play a very similar role in PC1 and PC2. Differences in their value are only 
important for PC3, but this PC is not useful for classification.  
Therefore, in order to obtain PC1 and PC2 filter F3 is redundant, and it seems 
plausible to use only filters F2 and F4 to study fires. The PC analysis has been 
repeated using only these two bands; the resulting PCs have the weights shown 
on figure 4 (bottom row). Again, weights are very similar along the whole burn.  
This suggests a way to a very simple processing, using only two bands and two 
fixed combinations of them given by the nearly constant weights of the PC1 and 
PC2 calculated for those two bands.  In this way we define two “pseudo-PCs” 
(“pseudo” because they are obtained by a fixed formula, not by an adaptive one 
as the real PCs): 

psPC1 = 0.813*f2 + 0.582*f4 
psPC2 = 0.582*f2  0.813*f4 

     To define the weights, we have calculated the PCs of a composite (“mosaic”) 
image formed by all the frames; the average values subtracted from F2 and F4 to 
obtain f2 and f4 have been calculated also for this mosaic image. 
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Figure 4: Weights of the two first PCs on the IR bands: Top, for three bands; 
bottom, for two bands.  

     These pseudo-PCs should be a good practical approximation of the real PCs 
for classification purposes. We have compared them graphically in figure 5. The 
left side shows the PC2 vs. PC1 scatterplot with the ML3B classes. At the right 
side, the same classes are shown on the psPC2 vs. psPC1 scatterplot. Although 
there are some differences on the shape of the scatterplot and the limits between 
classes are somewhat blurred, the overall pattern is very similar.  
     It is clear also that frontiers between classes in the scatterplot are quite 
straight. This suggests the idea of approximating them by straight lines that go 
through the origin and then to classify pixels according to the value of 
psPC2/psPC1. In fact, we will define the ratio psPC2/psPC1 as the Medium 
Infrared Fire Index:  

MIFI = psPC2/psPC1 
     If the frontiers between embers and fire front and between fire front and flame 
are approximated, respectively, by lines with slope s1 and s2, then a pixel with 
psPC1 > 0 will be assigned to “embers” if MIFI > s1, to “fire front” if s1 > MIFI 
> s2, and to “flame” if s2 > MIFI. If psPC1 < 0, the pixel is considered as 
background. 
     A way to assess this fast “MIFI-classification” is by plotting the histograms of 
MIFI values for the ML3B classes over the whole fire studied. This has been done  
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Figure 5: ML3B classes obtained for the whole burn plotted on the PC2 
versus PC1 scatterplot (left) and on the psPC2 versus psPC1 
scatterplot (right). 

in figure 6 (left). Ideally, no overlapping peaks for each class should be obtained. It 
is clear that there is an important overlap between embers and fire front, but flame 
is well separated both from embers and fire front. This is in fact a great progress as 
compared to separability based on PC2 value only, as can be seen in figure 6 
(right), where the fire front mixes completely with flame and embers.   
     Therefore, the MIFI provides a “fast classification” with acceptable results for 
practical purposes, and, since it applies a simple fixed linear combination to the 
digital numbers measured by the two F2 (3.7 m) and F4 (4.7 m) channels of a 
bi-spectral MIR imaging system, it can be implemented for real time operation in 
the field.  
     Figure 6 can be used to define the values of the threshold values s1, s2 used to 
classify the scene. For illustrative purposes we have used s1= 0.41, s2 = 0.0, 
although these values can be optimized depending on the relative importance of 
classification errors. An example of the results of this fast classification is 
provided by figure 7, where the ML3B classes (left) are compared with the MIFI 
classes (right) for frame number 5, showing a very good agreement.  
     Results can be summarized in the confusion matrix (table 1), which lists the 
percentage of pixels of each ML3B that is classified in each of the MIFI classes. 
Off-diagonal values are classification errors. Although there is an appreciable 
degree of crossing between the flame, embers and front classes, the overall 
accuracy is very good: a 96.5% of pixels correspond to the diagonal of the 
matrix; i.e., are classified equally by the two methods. If background pixels are 
excluded, accuracy is still 63.5%, which is an acceptable value taking into 
account that MIFI-based classification is extremely simple, and that s1, s2 
threshold values are not optimized. 
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Figure 6: Histograms for the different ML3B classes of: MIFI values (left), 
PC2 values (right). 

     

Figure 7: A typical image of the burn classified with ML3B classification 
(left) and classification based on MIFI values (right). 

Table 1:  Confusion matrix relating ML3B classification with MIFI 
classification. 

 ML3B class (Percent)  
MIFI 
Class 

Flame Embers Bkg Front Total

Flame 58.69 2.98 0.15 0.23 1.63
Embers 8.23 61.41 0.16 28.25 3.28

Bkg 10.82 3.35 99.49 0.02 91.49
Front 22.26 32.26 0.2 71.5 3.6 
Total 100 100 100 100 100
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5 Summary and conclusions 

Studies of forest fires in the medium IR have demonstrated that the scene can be 
classified into different regions using the first two Principal Components (PCs) 
of multispectral three-band images, at 3.7, 4.0 and 4.7 m. Analysis of the 
spectral weights of these components shows that they change little during the 
different fire stages, and that filter at 4.0 m is redundant. Thus, pseudo-PCs 
have been calculated as fixed combinations of digital numbers measured at 3.7 
and 4.7 m, and the similarity with the real PCs has been assessed. Finally, a 
Medium Infrared Fire Index (MIFI) has been proposed that is the ratio of the two 
pseudo PCs: MIFI = psPC2/psPC1. This index is extremely simple in 
computational terms, so that it can be calculated in real time. The ability of MIFI 
to perform a fast classification at a distance of 480 m has been demonstrated by 
comparing classes obtained from threshold values in MIFI with classes obtained 
with a maximum likelihood algorithm that uses the real PCs calculated with the 
three original bands. A global accuracy of 96.5% has been found that indicates a 
very good agreement and demonstrates the effectiveness of the fire-index 
approach. 
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