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Abstract 

The importance of understanding the impact of wildfires on natural ecosystems 
has given rise to the development of realistic computer models for the simulation 
of wildfires. Stochastic models based on simplified equations and local 
interactions, such as Cellular Automata (CA) models, are particularly popular as 
an alternative to more computationally demanding deterministic models. 
However, the challenges associated with observing wildfires under natural 
conditions, and the highly non-linear nature of fire spread makes it extremely 
difficult to parameterize them.  In this work we present a method for adjusting 
the behaviour of one such CA model from the statistical analysis of satellite data 
of more than 750,000 African wildfires detected in 2003. Statistical metrics are 
developed to characterize agreement between model and satellite observations. 
The average probability of fire transmission amongst cells and the spatial scale 
of the model are adjusted so that maximum agreement is found between model 
output and the observed extension and statistical distribution of the real fires. 
While the results obtained are only valid for the particular CA model used and 
within the geographical limits of the region studied, we believe the process could 
be adapted to fine-tune and validate other CA models in regions where enough 
fire observations are available.    
Keywords: fire spread model, cellular automata, parameter estimation, African 
savanna wildfires, satellite observations. 

1 Introduction 

The importance of wildfires for natural ecosystems, together with the socio-
economic danger they represent, have lead to a great deal of effort invested in the 
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simulation and modelling of fire behaviour. There is strong demand for accurate 
fire simulations that would provide an important tool for fire fighters and other 
people involved in fire management. However the modelling and understanding 
of wildfires is a highly complex problem, governed by non-linear equations and 
depending on more factors than can possibly be known at any time and which 
affect the fire behaviour in non-trivial ways. Because of this, deterministic 
models based on theoretical partial differential equations have only found limited 
success in the description of wildfires, and this only at the cost of large amounts 
of computer resources and processing time [1, 2]. Thus, stochastic models based 
on simplified empirical or semi-empirical equations have remained a popular 
alternative. 
     One of the main obstacles to the development of a realistic model for the 
simulation of the spread of wildfires lays in its validation with data from real 
fires. This is mainly due to the fact that the knowledge of the factors required by 
the models (such as humidity, wind information and vegetation type and state) is 
limited for the wildfires on record. Many published fire spread models are not 
compared directly to real data. Instead, a model’s validity is often discussed by 
comparing its output to that of some better-known model, usually for only one or 
two particular cases. If real data are used in the comparison, they are typically 
from a single wildfire and of high spatial and temporal resolution. While this is 
no doubt a very relevant initial test, it can hardly be considered enough for a 
process as complex as wildfire spread, particularly if the model is to be applied 
to a wider range of conditions. 
     In this work we compare the output of a new stochastic CA model for the 
spread of wildfires with statistics of the areas of real fires detected by satellite 
within an extensive region of Africa during the 2003 fire season (nearly 800,000 
wildfires). The model’s parameters are initialized with observations of 
vegetation type, wind, temperature, precipitation, and FAPAR (fraction of plant-
absorbed photosynthetically active radiation) from the study region. They are 
then adjusted to better reproduce the histogram of the observed fire areas, in 
order to establish the model’s optimal spatial resolution and average probability 
for fire spread. While this technique does not replace the need to compare a 
model’s output with data of high spatial and temporal resolution, we believe it 
represents a significant step towards comprehensive validation of fire spread 
models. 

2 Methods 

2.1 Fire data 

The fire data used in our study was obtained by the Moderate Resolution 
Imaging Spectroradiometer (MODIS) carried by the Terra (EOS AM) and Aqua 
(EOS PM) satellites, with a spatial resolution of 500x500 m2. The study region 
(Figure 1) corresponds to the MODIS tiles h19v10 and h20v10, an area of 
approximately 1200x2400 km2, with latitude spanning 10.00ºS to 20.00ºS, and  
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longitude between 10.15ºE and 31.92ºE. It includes portions of Angola, Zambia, 
Namibia, Botswana, Zimbabwe, Congo, Zaire and Mozambique. Data were 
available for the fire seasons (April to November) of 2000 to 2004. 
 

 

Figure 1: Study region, indicated by rectangle.  

     Fires were identified with a generic algorithm being developed by Rebelo et 
al. [3] and Rebelo [4]. This algorithm detects areas exhibiting sudden changes 
based on discrepancies between expected and observed bi-direction reflectance 
(BRDF) observations. In the study region, one of the most common causes of 
these sudden changes are wildfires, although several additional tests are used to 
separate burning from phenological changes within the pixel. The algorithm is 
similar to that of the MODIS fire product (see Roy et al. [5, 6]).  
     The algorithm detects the day a sudden change in BRDR suggests the onset of 
a wildfire in the region. Therefore the only information available is the probable 
day a fire starts for a pixel, and nothing is known about the fire’s duration. 
Nevertheless considering the type of vegetation present in the study region, 
predominantly savanna and shrubland, these wildfires would tend to propagate 
fast and have short duration. 

2.2 Additional geographical information 

The Type 2 MODIS Land Cover Product (MOD12Q1) was used to identify types 
of vegetation present within the study region [7, 8]. Five different types of 
vegetation were considered in the study: savanna, woody savanna, grassland, 
open shrubland and deciduous broadleaf forest. Together they encompass over 
80% of the total area analyzed, with savanna and woody savanna representing 
45% and 20% respectively.  
     In order to estimate the potential amount of burnable fuel available in each 
grid cell, we employed the monthly, gridded 0.5° by 0.5° FAPAR product of 
Gobron et al. [9] for 2002-2003, generated from an analysis of the data recorded 
by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). 
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     Some wind information was available for the period from February 1999 to 
October 2001 from measurements carried out by a station of the FLUXNET 
network located near Maun, Botswana [10, 11].   
     For the climate input we used daily precipitation and daily minimum and 
maximum temperatures. The values of those variables and of solar incoming 
radiation for the period 2000 to 2004 were generated on a global 2° latitude by 2° 
longitude grid using the method of Nijssen et al. [12], based on daily station data 
from the Summary of the Day Observations (Global CEAS), National Climatic 
Data Center, and monthly gridded data. Monthly gridded temperature was 
obtained from the data set of Jones et al. [13, 14], with gaps filled from data of 
Hansen et al. [15, 16]. Monthly gridded precipitation data came from a 1.0° 
version of Chen et al. [17]. 

2.3 The model 

The model used in the study [18] is laid out on a rectangular 2-dimensional 
lattice. It takes the cells initially on fire as input, and reproduces the possible 
evolution of the fire over successive time steps. The fire spread relies on the 
computation of semi-empirical probabilities of fire transmission from cells on 
fire and is stochastic in nature. The probabilities are computed based on climate 
factors, vegetation type, wind intensity, topography, fire intensities, and fuel 
content of each cell. Although the main form of propagation occurs among 
neighbouring cells, propagation from other cells is also possible by the emission 
of sparks, influenced both by wind and topographic conditions. The duration of 
the fire on each cell is computed from the amount of fuel existing on the cell and 
the fire’s intensity. The model does not present spurious symmetry, and the 
results obtained appear realistic and successfully reproduce features of real 
wildfires, such as spotting.  
     For this analysis, the probability of transmission was expressed as the product 
of independent factors reflecting the effects of vegetation type, climate, wind 
strength, and average fuel load respectively. The effect of the vegetation type 
was implemented by re-scaling the percentages of the area burned within each 
vegetation type against data from a previous exhaustive study of the region 
during 2000 to 2004 (Roy et al. [5]). Climatic factors affecting fire spread make 
use of the widely adapted Nesterov Index [19], which takes into account the 
maximum daily temperatures of any series of consecutive days without 
significant rainfall. A preliminary analysis of the fire behavior in the area for the 
period for which wind data were available suggested a relationship between the 
probability of transmission and the maximum daily wind strength. Finally, the 
average litter load in the region of interest was approximated as the integral of 
the losses in leaf mass, estimated from time-integrated decreases in satellite-
derived FAPAR. 

2.4 Methods 

Since the spatial resolution of the fire data (250,000 m2 per pixel) is much 
coarser than the model’s lattice cells, the comparison with the model output was 
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carried out statistically considering the total burned area of each pixel. Burning 
pixels were considered to belong to the same fire if they were both contiguous in 
space (neighbouring cells) and time (the changes must have been detected either 
the same day, or with one day difference). A histogram with the fire areas of the 
nearly 800,000 fires detected in 2003 was compared with histograms obtained 
from a large number of model simulations. 
     For each model run, a fire starting point within the study area and a start data 
between April to November of 2003, the period for which all required data were 
available, were chosen at random. The random election of a date is justified, 
since the amount of detected fires barely changed between the different months 
of the fire season analyzed (not so the number of burning pixels, which clearly 
peaks in July and August, implying more extensive fires during those months).  
     The initial distribution of fuel load on the model lattice, i.e. at a much higher 
spatial resolution than the available satellite observations, was again generated 
through a random process for each run. The average fuel values were thereby 
kept below 30%, giving rise to fast, low intensity wildfires, similar to the ones 
observed for typical savanna conditions. 
     The contributions of type of vegetation, climate, and fuel load to the average 
probability of transmission were computed as a function of vegetation type, litter 
load, and Nesterov index. For the computation of the effect of the wind, a 
random value for the maximum daily wind strength was generated, based on the 
monthly averages and standard deviations values measured at the Botswana 
station.  
     The final probability of fire transmission between cells was obtained from the 
product of the contributions of vegetation type, climate factor, and fuel load 
multiplied by a global constant k, which was optimised by maximizing 
agreement between modelled and observed fire extension histograms. k was 
allowed to take on several values within the interval  (0, 1). The model was run 
multiple times for each value of k. Over 350,000 simulations were run in total, 
all employing a 100x100 lattice.  
     The equivalence between the number of cells that are counted as burned in a 
simulation and a burned pixel from the satellite fire data depends both on the 
spatial resolution of the model (which was allowed to change) and the percentage 
of the area of a pixel that needs to burn in order for the fire to be detected. For 
the satellite fire detection algorithm employed, the latter falls somewhere 
between 10 and 20%, and in this study it was set at 15% for comparison with the 
model output. 

3 Results 

The comparison between the histogram derived from observations and model 
output was carried out using the Kullback-Leibler divergence [20], which has 
previously been applied to the testing of other ecological models [21, 22]. 
     The number of bins for the histogram is limited by the number of satellite 
data pixels that correspond to the area represented by the model’s 100x100  
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lattice. We found an optimal representation at seven bins, considering number of 
events per bin and number of data points of the two histograms. 
     Figure 2 shows the variation of the Kullback-Leibler divergence as a function 
of the model’s resolution (A, B) and the value of k (A, C). We can see that the 
KL divergence value does not vary much with resolution as long as it stays 
above ca. 22–23 meters, although the fit does get progressively worse as the 
spatial resolution gets coarser. The dependence on k is much stronger, with a 
very well defined minimum at 0.46. 
     The optimal model histogram (corresponding to k=0.46 and a spatial 
resolution of 26x26 m2) is shown in Figure 3 for comparison with that of the 
satellite observations from the study area (in black). We find good agreement 
between the histograms, with a final value for the Kullback-Leibler divergence 
of 0.015. 
 

 

Figure 2: A) Kullback-Leibler divergence as a function of the probability 
factor k and the model’s spatial resolution (indicated by the length 
corresponding to the side of a cell). The minimum is found for 
k=0.46 and a resolution of 26x26 m2. B) KL divergence as a 
function of the spatial resolution, for k=0.46. C) KL divergence as a 
function of k, for a resolution of 26x26 m2. 
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Figure 3: Comparison of the histograms with the percentage of fires detected 
as a function of their extension, for real data (black) and the 
optimal model output (white), for k=0.46 and a spatial resolution of 
26x26 m2. Fire extension is measured in pixels, each corresponding 
to 250,000 m2. For these two distributions the Kullback-Leibler 
divergence reaches the minimum value of 0.015. 

4 Conclusions 

In this work we have presented a new stochastic model for the prediction of the 
spread of wildfires based on cellular automata on a square grid, and its 
application to African savanna fires. After running multiple simulations with 
random conditions from the extensive study region, the fire area distribution of 
the model was compared to the satellite-derived fire data for the fire season of 
2003 for a large region of southern Africa, with over 750,000 detected wildfires. 
The method has allowed the selection of the optimal average probability of fire 
spread and spatial resolution of the model. A good agreement has been found, 
with a value for the Kullback-Leibler divergence of 0.015 for a 7-bin histogram 
of the frequency each fire area was detected/simulated. 
     We believe this result lend valuable credibility to the model in an extensive 
set of conditions, in particular given that fire spread models are rarely compared 
to such an extensive set of real wildfire data. However it does not eliminate the 
need of further tests. The direct comparison of model output with the evolution 
of real fires with data available at high spatial and temporal resolution would 
greatly benefit the adjustment of the model’s behaviour, particularly regarding 
the effects of topography and wind on the probability of transmission. 
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