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Abstract 

Response behaviors of medaka were computationally analyzed before and after 
the treatments of copper at low concentration (1.0 mg/L). Parameters (e.g., 
speed, stop time, turning rate, etc) of the movement patterns were used as input 
for training the Multi-Layer Perceptron. Detection rates of the movement 
patterns such as ‘Slow movement’ and ‘No movement’ increased after the 
treatments. However, a higher degree of variation was observed in detection 
rates. Fractal dimension calculated from the movement data of individual 
specimens decreased consistently after the treatments. Higher consistency in 
fractal dimension was further achieved by using the data for collective rearing. 
Feasibility of behavioral monitoring was discussed in assessing toxic chemicals 
in environment.  
Keywords:  response behavior, medaka, copper, fractal dimension, Artificial 
Neural Network, behavioral monitoring. 

 © 2006 WIT PressWIT Transactions on Biomedicine and Health, Vol 10,
 www.witpress.com, ISSN 1743-3525 (on-line) 

Environmental Toxicology  93

doi:10.2495/ETOX060101



1 Introduction 

Recently automatic detection of response behaviors of animals has been 
considered as an efficient tool for bio-monitoring of aquatic ecosystems [1]. 
Dutta et al [2] suggested that a behavioral bioassay would be more sensitive than 
other types of testing methods. A numerous accounts of behavioral research on 
effects of toxic chemicals at low concentrations have been reported in various 
taxa, including crustaceans [3, 4], snails [5], fish [6] and insects [7, 8]. Recently 
Oshima et al [9] observed suppression of sexual behavior in male medaka 
exposed to estradiol. However, these studies are mostly based on observation of 
single or combinations of single behaviors mainly with qualitative descriptions. 
Not much computational research has been carried out for automatically 
detecting behavioral changes from continuous recording.  
     Behaviors, however, have been regarded as difficult for analysis due to 
complexity residing in the data. Theoretical studies have been carried out on 
analyzing movement data regarding correlation function [10], random walk [11], 
etc. Recently fractal dimension has been considered as an efficient parameter to 
quantitatively express behavioral states. Fractal dimension has been widely used 
for analyzing non-linear phenomena in biological and ecological sciences such as 
geographical features, morphology, etc, [see 12]. Johnson et al [13] and Weins et 
al [14, 15] used fractal dimension for analysis of insect movement to 
quantitatively characterize behavioral states that might not be available through 
absolute measures of pathway configurations. Alados et al [16] used fractal 
dimension for detecting response behaviors of parasitic infection in Spanish ibex. 
In this study we used fractal dimension to reveal behavioral states of indicator 
specimens in response to toxic substances.  
     Along with fractal dimension, we also implemented Artificial Neural 
Networks (ANNs) to address pattern changes in response behaviors. While 
fractal dimension quantitatively compresses behavioral changes as one 
parameter, ANNs are useful for dealing with local information and for revealing 
specific behavioral patterns explicitly. ANNs have been widely used for 
analyzing complex data in computer and electronics engineering [see 17, 18] and 
have been recently implemented to ecological sciences in various aspects such as 
forecasting, input-output relationships, data organization, classification, etc [see 
19, 20]. Recently ANNs have been applied to behavioral monitoring. Self-
Organizing Map was applied to classification of response behaviors of indicator 
organisms treated with diazinon [21, 22]. Multi-Layer Perceptron (MLP) was 
used to automatically detect behavioral changes in organisms such as medakas 
and chionomids in response to toxic chemicals [23, 24]. 
     In this study we intend to extract local and global information residing in 
behavioral data and to propose a system to quantitatively characterize response 
behaviors in both explicit (i.e., MLP) and compressed (i.e., fractal dimension) 
forms. Initially MLP was applied to detection of changes in specific movement 
patterns after the treatments of toxic substances. Subsequently we elucidated 
fractal dimension as a means of minimizing the variability of behavioral data to 
be a reliable parameter to detect changes in behavioral states. 
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2 Materials and methods 

2.1 Test specimens and observation system 

Medakas (Oryzias latipes), the “or” strain originally developed by Bioscience 
Center, Nagoya University, Japan, were obtained from Toxicology Research 
Center, Korea Research Institute of Chemical Technology (KRICT; Taejeon, 
Korea) for testing. The stock populations were maintained in a glass tank, and 
were reared with artificial dry diet (Tetramin) under the light regime of 
L10:D14 in temperature ranging 25±1°C. In photo-phase, a fluorescent lamp 
(20 W) was used as the light source and was located above the observation 
aquarium with 30 cm apart. In scoto-phase, a red light (20 W) was provided at 
the same position. 
     The position of the test specimens of medaka (age: 6–12 months) was 
recorded by using an observation system consisting of an observation aquarium, 
a camera and software for image recognition. Individuals or groups of medakas 
were placed in a glass aquarium (volume of water: 40 cm ×20 cm ×10 cm), and 
their position was scanned from the side view at 0.25 s intervals using a CCTV 
camera (Kukjae Electronics Co. Ltd.; IVC-841®) for four days (two days before 
the treatments and two days after the treatments). The analog data captured by 
the camera were digitized by using a video overlay board (Sigmacom Co., LTD.; 
Sigma TV II®), and were sent to the image processing system to locate the target 
organisms in two dimension. The software for recognition of the movement 
tracks and other supporting mathematical programs were provided according 
to [23].  
     During the period of observation, disturbances in experimental conditions 
were minimized: oxygen, fresh water and food were not supplied to test 
specimens to simplify observation conditions [23]. Before monitoring, the 
specimens were acclimated to the observation aquarium for 1–2 days. 
Environmental factors such as light and temperature were maintained to the same 
condition for rearing stock populations. 

2.2 Experimental procedure 

Copper was treated to medaka fishes in this study. The level of LC50 for copper 
to medaka population was reported as 5 mg/L [25]. After two days of 
observation without treatment, reaction behaviors were also recorded for two 
days after the treatments of copper (1 mg/L).  
     Initially, we observed 10 medaka fishes individually before and after the 
treatments. The parameters were extracted from the segmented data in every 
30 s. Based on previous research on the movement tracks [23], the following 
parameters were selected to characterize the movement patterns and were 
subsequently used as input data for training MLP (see section 2.3):  
 
1) Speed (mm/s): average in movement distance of the fish during the 

observation time. 
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2) Y-position (mm/sec2): the average distance in Y-axis measured from the 
surface during the observation time; as the specimens was located close to 
the surface, the Y-position was decreased 

3) Stop number: the total frequency in which specimen did not move. 
4) Stop duration (total time of stops: s): the total duration in which the 

specimen did not move. 
5) Turning rate (rad/s): the sum of angle changes in radian in absolute values 

divided by the cumulated time duration of movement. 
6) Meander (rad/mm): the sum of angle changes in radian in absolute values 

divided by the path length. 
 
     For calculating statistics of the parameters of the movement tracks, we 
selected 10 sample segments (30 s) by visual observation for each movement 
pattern. This process was repeated for 10 specimens. In total 100 segments were 
obtained for each pattern. Among the selected samples 30 segments were 
randomly chosen for statistical analysis. Subsequently 10 samples were 
independently selected for the MLP training by random sampling. For testing the 
trained MLP, the whole sequence of the movement data for four days (2 days 
separately for each ‘before’ and ‘after’ the treatments) were provided to the 
trained MLP. The data segments in every 30 s interval were continuously 
provided to be recognized by the trained network.  
     Medaka fishes were also reared in groups with four specimens in the same 
conditions applied to individual rearing in 10 replications. Fractal dimension (see 
section 2.4) was calculated for the movement data for specimens in individual 
and group rearing.  

2.3 Multi-Layer Perceptron (MLP) 

The MLP [26] was trained with the data for the movement tracks. Training 
proceeds to minimize the mean square error between the actual input and desired 
output (or target value) according to the back-propagation algorithm (Fig. 1) [18, 
26]. In this study the parameters characterizing the movement tracks were used 
as input data (6 nodes), while the decision of the movement patterns were given 
in the binary form as matching output (6 nodes).  

 
 

Figure 1: The schematic diagram of MLP. 
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     The net input (NETp,j) to neuron j of the hidden layer for pattern p is 
calculated as the summation of each input layer output (Xp i; input value of 
parameter) multiplied by weight (vji). The similar calculation is provided for the 
neuron k of the output layer being linked by summation of each hidden layer 
output (Zp,j). An activation function (logistic function in this case) is applied to 
calculate the output of neuron j of the hidden layer (Zp,j) and the output of neuron 
k of the output layer (Op,k), according to the following eqn. (1): 

)exp(1
1)(

NET
NETf

λ−+
=

                                       (1) 
where λ is the activation function coefficient. NET is expressed either in Zp,j or 
Op,k as follows, eqn. (2), (3): 
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                                       (2) 
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where vji and wk,j are the connection weight between neuron i of the input layer 
and neuron j of the hidden layer, and the connection weight between neuron j of 
the hidden layer and neuron k of the output layer, respectively. 
     The back-propagation algorithm adjusts the connection intensities (weights 
(vji) and (wk,j)) of the network in a way that minimizes error. The sum of the 
errors in each neuron for pattern p, Errp, is calculated as follows, eqn. (4): 

∑ −=
k

kpkpp odErr 2
,, )(

2
1

                                       (4) 
where dp,k is the target value corresponding to pattern p at neuron k. The value of 
the activation function coefficients, λ, used in this study was 1.0, and the 
learning coefficient, which updates the weights in iterative calculation, was set at 
0.01. The level of error tolerance was 1.0, and the threshold for determining the 
binary level for the activation function was 0.5. Network pruning was not 
required during the training process in this study. Details of using MLP can be 
found in the related bibliographies [17, 18, 26, 27].  

2.4 Fractal dimension 

Fractal dimension, D, was measured on location of specimens in individual 
rearing. The points recorded in every 0.25 sec in 1-hour segment of the 
movement tracks  were used for calculation based on the Box-Counting method 
(MATLAB® 5.3.), eqn. (5): 

( ) ( )r
NDrrN D

1log
log,1)( ==                                  (5) 

where N(r) is the number of points observed within the box sized as r2. The two 
values, N(r) and r are presented as a linear form by the double logarithmic graph. 
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In each 1-hour segment of the movement tracks, overlapping was allowed for 
30 min. 
     Fractal dimension was also measured for the data from group rearing. The 
data points (0.25 s interval) of four specimens in the 15-minute segments were 
used for calculating fractal dimension. In each segment of the movement tracks 
overlapping was allowed for 30 min and 7.5 min for individual and group rearing 
respectively. 

3 Results 

3.1 Characterization of behavioral patterns 

Behaviors of fish have been reported to show typical patterns, including 
stationary movement, up-down swimming with circular motion, eating, agonistic 
behavior, hiding, etc [28]. In this research we also observed some clear 
movement patterns of medakas under the experimental conditions. Figure 2 
shows the typical movement patterns of the tested specimens.  
 

 
 

Figure 2: The movement tracks (side view) showing the behavioral patterns 
of medaka specimens in 30 s segments (a); Swimming, (b); 
Feeding, (c); Surface movement, (d); Slow movement, (e); 
Frequent stop, (f); No movement). 

     ‘Swimming’ presented the active state of specimens (Fig. 2(a)), being 
characterized by the highest speed (65.82 mm/s) and wide circling in the 
observation aquarium (Table 1). ‘Feeding’ showed the horizontal movement 
along the bottom of the observation aquarium in the limited range (Fig. 2(b)). 
The Y-position (180.02 mm) of ‘Feeding’ is higher than any other patterns 
(Table 1). In the observation system, the position on Y-coordinate movement is 
higher as it is closer to the bottom of the aquarium. ‘Surface movement’ showed 
horizontal activity near the top area of the aquarium (Fig. 2(c)). In contrast to the 

(a) (b)

(c) (d)

(e) (f)
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‘Feeding’, Y-position (15.56 mm) of ‘Surface movement’ was lower than any 
other patterns (Table 1). ‘Slow movement’ showed the lower phase of activity: 
the stop time (20.92 s) was longer than any other patterns (Table 1). ‘Stop’ is 
defined as the specimens maintaining the same position for the duration of 0.25 s 
in this study. Stop time is calculated as summation of the time duration for each 
stop. ‘Frequent stop’ is another pattern showing slow phase of activity. The 
specimens repeated the ‘stop’ and ‘short advancement’. Stop number in 
‘Frequent stop’ was observed as frequently as in ‘Slow movement’, however 
stop time was distinctively shorter in ‘Frequent stop’ (6.2 s) than in ‘Slow 
movement’ (20.92 s) (Table 1). Overall, ‘Frequent stop’ presented somewhat 
more active states compared with ‘Slow movement’.  

Table 1:  Parameters characterizing the different movement patterns of 
medaka specimens before and after the treatments of copper (n=30 
for each parameter for each pattern, (a); Swimming, (b); Feeding, 
(c); Surface movement, (d); Slow movement, (e); Frequent stop). 

 
Parameters 

Speed 
(mm/s) 

Y-position 
(mm) 

Stop time 
(sec) 

Stop 
number 

Turning rate 
(rad/s) 

Meander 
(rad/mm) 

 Patterns Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

a 65.8  12.4  90.7  16.4 0.3  0.5 0.7  1.2 1.7  0.3 0.0  0.0  

b 11.2  2.4  180.2 3.4  7.7  4.0 11.7  2.7 4.4  0.8 0.3  0.1  

c 17.5  9.8  15.6  7.2  7.2 5.0 11.2  6.0 2.9  1.2 0.2  0.1  

d 3.6  1.1  97.9  82.1 20.9  3.3 13.1  4.8 5.9  1.0 0.5  0.1  

e 10.0  2.0  107.6 39.3 6.2  3.5 14.2  4.8 5.0  1.4 0.4  0.1  

 

Table 2:  Analysis of variance (ANOVA) and Tukey test for multiple 
comparisons of parameters characterizing the different movement 
patterns of medaka specimens before and after the treatments (n=30 
for each parameter for each pattern, (a); Swimming, (b); Feeding, 
(c); Surface movement, (d); Slow movement, (e); Frequent stop). 

Comparison of parameters2 
Parameters F1 P 

(Tukey test, α=0.05) 

Speed (mm/s) 368.01  <0.001 a ≠ c ≠ b = e ≠ d 

Y-position (mm) 59.38  <0.001 b ≠ e = d = a ≠ c 

Stop time (sec) 133.75  <0.001 d ≠ b = c = e ≠ a 

Stop number 48.99  <0.001 e = d = b = c ≠ a 

Turning rate (rad/s) 80.11  <0.001 d ≠ e = b ≠ a = c 

Meander (rad/mm) 112.23  <0.001 d ≠ e = b ≠ c = a 

1F 0.05(2), 5, 150 = 2.66  
2Patterns were listed in the increasing order from left to right. 
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     The parameters mostly appeared to be statistically different in different 
movement patterns according to the Tukey test [29] (Table 2). Regarding speed, 
‘Swimming’, ‘Surface movement’ and ‘Slow movement’ were different among 
the patterns, but ‘Frequent stop’ and ‘Feeding’ were in the same range. ‘Feeding’ 
and ‘Frequent stop’ were also similar in the other parameters including stop time, 
stop number, turning rate and meander. Y-position, however, was different 
between the two patterns. The other movement patterns were uniquely 
distinguished each other and were statistically different (Table 2). 

3.2 MLP applied to individual data 

The parameters characterizing the movement patterns were effectively learned 
by MLP with the training rates mostly over 92%. As stated before the whole data 
set was used for testing. The pattern of input segment (30 s) was recognized by 
the trained MLP. Detection rates were calculated as the number of correct 
recognition divided the number of the total recognition for each individual. The 
detection rate for each specimen was subsequently averaged with 10 specimens. 
Table 3 shows changes in detection rates (%) for each pattern in averages for 
10 specimens before and after the treatments.  

Table 3:  Detection rate (%) of different movement patterns of medaka 
specimens before and after the treatment of copper (a; Swimming, 
b; Feeding, c; Surface movement, d; Slow movement, e; Frequent 
stop, f; No movement). (n=10). 

Day Night All 
Treatments Patterns 

Mean SD Mean SD Mean SD 

a 31.48% 30.21 10.79% 17.93 21.13% 26.41 

b 13.10% 11.24 7.91% 6.84 10.50% 9.44 

c 6.56% 10.21 7.74% 5.07 7.34% 7.73 

d 5.80% 5.25 10.70% 5.68 8.25% 5.89 

e 4.24% 3.75 9.12% 9.12 6.68% 7.23 

Before 
Treatment 

f 6.19% 7.89 20.26% 19.55 13.22% 16.21 

a 12.51% 13.25 3.51% 3.49 8.01% 10.5 

b 8.21% 5.93 3.23% 2.72 5.72% 5.17 

c 3.56% 3.94 2.45% 1.72 3.01% 3.01 

d 14.91% 7.33 19.45% 5.18 17.18% 6.6 

d 9.21% 5.87 8.77% 5.81 8.99% 5.69 

After Treatment 

f 21.88% 11.37 37.93% 9.41 29.21% 13.07 

 
     Before the treatments, detection rate of ‘Swimming’ pattern was high with 
21.13%, but the rate decreased to 8.01% after the treatments (Table 3). The 
‘Feeding’ (from 10. 50% to 5.72%) and ‘Surface movement’ (from 7.34% to 
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3.01%) patterns also accordingly decreased. In contrast, detection rates for ‘Slow 
movement’ (from 8.25% to 17.18%), ‘Frequent stop’ (form 6.68% to 8.99%) and 
‘No movement’ (from 13.22% to 29.21%) increased after the treatments of 
copper (Table 3). In general, detection rates for the patterns representing high 
activity (e.g., ‘Swimming’, ‘Feeding’ etc) were decreased after the treatments. 
     Higher variation was observed in the detection rates obtained by the trained 
network. Standard deviations in detection rates were in the higher range, and all 
the parameters were not distinguished with statistical tests. Table 4 shows the 
comparison of detection rates (%) before and after the treatments based on the t-
test (n=10 for each pattern) in different light phases. The patterns of ‘Slow 
movement’ and ‘No movement’ were statistically significant accordingly in 
photo- and scoto-phase, and the total periods (Table 4). Although the average 
values showed differences, ‘Swimming’, ‘Feeding’ and ‘Frequent stop’ were not 
statistically different before and after the treatments. The trends of behavioral 
changes were similar in scoto- and photo-phases. ‘Surface movement’ was only 
different at night before and after the treatments (Table 4).  

Table 4:  Comparison of detection rates (%) in different movement patters 
before and after the treatments based on the t-test (n= 10 for each 
pattern, a; Swimming, b; Feeding, c; Surface movement, d; Slow 
movement, e; Frequent stop, f; No movement). 

  Photophase Scotophase Total period 

  t P t P T P 

a 1.818  n.s. 1.259 n.s. 1.666 n.s. 
b 1.215  n.s. 2.012 n.s. 1.646 n.s. 
c 0.992  n.s. 3.123 0.01<P<0.02 1.815 n.s. 
d 3.193  0.01<P<0.02 3.599 0.005<P<0.01 3.836 0.002<P<0.005 
e 2.255  n.s. 0.100 n.s. 0.912 n.s. 
f 3.587  0.005<P<0.01 2.576 0.05<P<0.02 3.293 0.005<P<0.01 

t 0.05(2),9 = 2.262 

3.3 Fractal dimension applied to individual rearing 

In contrast to the results from MLP, fractal dimension showed more consistency 
in revealing changes in behavioral states of medaka specimens after the 
treatments of copper (Fig. 3). Although there were individual variations, 
decrease in fractal dimension appeared consistently for all the tested specimens. 
The average in fractal dimension was 1.62 ± 0.10 before the treatments, but 
decreased to 1.42 ± 0.16 after the treatments. The Nested ANOVA indicated that 
the values of fractal dimension were statistically different between ‘before’ and 
‘after’ the treatments (df = (1, 18), F = 6.2, 0.02<P<0.05). The sub-group of 
individual specimens, however, was different (df = (18, 600), F = 3.07, 
P<0.001). This indicated that individual variation existed in the values of fractal 
dimension. 
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Figure 3: Fractal dimension of the movement points in different specimens of 
medaka obtained from individual rearing before and after the 
treatments of copper, 1 mg/L. 

3.4 Fractal dimension applied to group rearing 

We further analyzed fractal dimension of the movement points when the 
specimens were reared in groups of 4 specimens (Fig. 4). Fractal dimension 
consistently decreased after the treatments of copper (1 mg/L) in different 
groups, being similar to the case of individual rearing. The average of fractal 
dimension was 1.63 ± 0.02 before the treatments and 1.46 ± 0.07 after the 
treatments. The values of fractal dimension from group rearing were more 
consistent compared with individual rearing. The Nested ANOVA showed that 
the values of fractal dimension were significantly different between the 
treatments (df = (1, 18), F = 23.35, P<0.001). In contrast to the case of individual 
rearing, however, the values of fractal dimension were also in the similar range 
between the tested groups: the sub-group difference was not significant (df = (18, 
820), F = 0.05, P>0.5). This indicated that individual variation in fractal 
dimension could be minimized through group rearing of fishes.  
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Figure 4: Fractal dimension of the movement points in different groups of the 

4 medaka specimens before and after the treatments of copper, 
1.0 mg/L. 
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4 Discussion and conclusions 

A computational system was developed for automatically detecting the 
movement states of medaka specimens in this study. Although individual 
variation occurred, MLP was useful for detecting movement patterns explicitly. 
The specific patterns such as ‘Slow movement’ and ‘No movement’ were 
statistically different before and after the treatments (Table 3). These patterns 
could be used as indicator patterns of medakas for detecting presence of toxic 
substance in environment. 
     We further showed that the higher variation in individuals could be decreased 
by using fractal dimension. The values of fractal dimension appeared to 
consistently decrease for all the tested specimens after the treatments (Fig. 3). 
The group testing, consisting of 4 medaka fishes, further minimized the variation 
of fractal dimension by showing no statistical difference among different groups 
(Fig. 4). Consistency in the measurement of fractal dimension was revealed in 
comparing Coefficient of Variation (CV: standard deviation divided by mean) 
(Fig. 5). CVs for group rearing were lower for both ‘before’ and ‘after’ the 
treatments. The difference between individual and group rearing was more 
clearly observed after the treatments with the statistical significance (df= (1, 18), 
F = 6.01, 0.02<P<0.05). The statistical difference was not observed for CVs 
between individual and group rearing before the treatments (df= (1, 18), 
F = 0.66, P>0.5), however the average value was lower for group rearing 
(Fig. 5).  
     This study indicated that fractal dimension based on group rearing could be 
used as a reliable parameter to indicate behavioral changes of medakas after the 
treatments of copper. Another advantage of fractal dimension is the flexibility in 
recording data points in group rearing. In the image processing system, it is in 
general difficult to trace the movement tracks for each specimen in group rearing 
especially if the specimens are small in size. Fractal dimension, however, was 
measured from the positions of the specimens collectively, and tracing each 
individual movement was not necessary in this case. 

 

 

Figure 5: Comparison of CVs of fractal dimension in individual and group 
rearing before and after the treatments of copper, 1.0 mg/L. 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Specimens Groups Specimens Groups

Before Treatments After Treatments 

 © 2006 WIT PressWIT Transactions on Biomedicine and Health, Vol 10,
 www.witpress.com, ISSN 1743-3525 (on-line) 

Environmental Toxicology  103



     In real situation, MLP and fractal dimension could be used in combination for 
providing more practical information for warning system in risk assessment. 
While fractal dimension would provide information on the global change in 
behavioral states more consistently in a compressed form, MLP would reveal 
differences in the specific patterns, thus providing more detailed information on 
explicit response behaviors. The two methods could be combined to produce an 
efficient monitoring system for in-situ risk assessment in aquatic systems in the 
future.  
     In this study we used copper as toxic substances. Copper plays an essential 
role in mitochondrial function, detoxification of free radicals, neurotransmitter 
synthesis, cross-linking of connective tissue, and cellular iron metabolism. 
Copper causes mutations in genes encoding “P-type” transport ATPase and 
induces neurotic disease such as Lou Gehrig’s and Wilson’s disease [30]. The 
toxicological impact would consequently produce stressful responding behaviors 
of the organisms. Toxic responses to copper have been reported on some 
indicator species. Activity accordingly decreased in Daphnia magna and 
Gammarus [31, 32]. Not much quantitative research, however, has been 
conducted on behavioral changes especially on vertebrates such as fish. In this 
study, we demonstrated that computational methods such as MLP and fractal 
dimension could be efficiently used for monitoring contamination of copper by 
using fish as indicator specimens. 
     In conclusion, MLP could accommodate local information on response 
behaviors and would be useful for detecting changes in specific patterns. The 
consistency in behavioral detection was achieved by fractal dimension especially 
through group rearing, and the parameter could be useful source of a reliable 
indicator in determining behavioral states of specimens exposed to toxic 
chemicals. MLP and fractal dimension could be used in combination as an 
efficient means of in-situ monitoring by providing both ‘local and more specific’ 
(i.e., MLP), and ‘global and more consistent’ (i.e., fractal dimension) 
information concurrently.  
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