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Abstract 

Measurement of behavioral responses have been recently considered as an 
important method for monitoring risk assessment. Computational processing 
could be applied to continuous data for automatic determination of changes in 
behavioural states of indicator specimens. Behavioral monitoring could be used 
as an alternative tool to fill the gaps between large (e.g., ecological survey) and 
small (e.g., molecular analysis) scale methods for risk assessment. While the 
points were conventionally used for indicating movement of test specimens, the 
line shapes of blackworms, Lumbriculus variegatus, were trained by Artificial 
Neural Networks in this study. We proposed an unsupervised temporal model, 
Recurrent Self-Organizing Map (RSOM), to detect sequential changes in the 
line-movement of blackworms after the treatments of a toxic substance, copper, 
in this study. RSOM was feasible in addressing the stressful behaviors of 
indicator specimens such as body contraction, high degree of folding, etc. We 
demonstrated that the unsupervised temporal model is efficient in classifying 
temporal behavior patterns and could be used as an alternative tool for the real-
time monitoring of toxic substances in aquatic ecosystems in the future.  
Keywords: Recurrent Self-Organizing Map, response behavior, temporal 
sequence processing, Lumbriculus variegates. 
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1 Introduction 

Considering the urgency of water contamination, development of methods for 
assessing toxicity has been regarded as an important issue in maintaining 
sustainable ecosystem health. Toxicity exposed to ecosystems can be assessed in 
various scales. Previous practices in assessment, however, were skewed to either 
extremely large (e.g., biodiversity evaluation in communities) or small 
(e.g. molecular or chemical analyses) scales.  
     Recently, continuous behavioral monitoring of indicator organisms [1–4] has 
been considered as one of the efficient tools filling the gaps between the large 
and small-scale assessment methods. Monitoring of the locomotory behavior has 
been introduced as an efficient means of evaluation of contaminated ecosystems 
with toxic chemicals [5]. A numerous accounts of research on effects of toxic 
chemicals on behaviors of organisms have been reported in various taxa, 
including crustaceans [6, 7], snails [8], fish [9, 10] and insects [11, 12]. 
However, these studies have been mostly limited to observation of single or 
combinations of single behaviors mainly with qualitative descriptions. 
Quantitative characterization of behaviors, however, is difficult for analysis due 
to complexity residing in the behavioral data. 
     Theoretical study on behavior has been initiated with research on biological 
motion regarding random walk [13], correlation function [14, 15], movelength 
analysis [16], fractal dimension [17–19], etc. However, these parameters are 
highly condensed and tend to emphasize the totality of the movement states of 
indicator organisms. Addressing behavioral states in a compressed form (i.e., as 
a parameter), however, may not be suitable for uniquely characterizing various 
behavioral patterns. Local information on movement patterns may also be critical 
in determining various states of animal behaviors [1, 2]. 
     In this study we used Artificial Neural Networks (ANNs) to extract 
information from complex behavioral data. ANNs has been regarded as an 
efficient non-linear filter, and have been widely used for forecasting and data 
organization in ecological sciences [20–22]. Recently ANNs have been applied 
to behavioral monitoring. Kwak et al [1] implemented Multi-Layer Percepton 
(MLP) for detecting response behaviors of medakas treated with Diazinon. 
Wavelets and ANNs have been also used in combination to detect changes in 
response behaviors of chironomids for water quality monitoring [23]. In addition 
to supervised learning by MLP, Self-Organizing Map (SOM) was implemented 
to patterning the movement tracks of indicator organisms in an unsupervised 
manner in response to the treatments of toxic substances. SOM was efficient in 
classifying different states of response behaviors of indicator organisms such as 
cockroach [3] and medaka [24]. 
     In the previous studies with ANNs, however, the static patterns were mainly 
considered as input, and location of the specimens (i.e., points) was the main 
source for training the movement tracks in the networks. In this study we 
demonstrated the feasibility of SOM in revealing the patterns of sequential 
movement of indicator specimens in a recurrent manner. In addition, a species in 
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oligochaetes was selected as indicator organisms, and the line shapes of the 
specimens were used as input data for training.  
     Recent models of neural networks have been used for temporal sequence 
processing (TSP). The temporal network was reported to be more feasible in 
learning time series data than conventional methods based on linear (e.g., AR 
and ARMA) and non-linear (e.g., NARMAX and MARS) statistical analyses 
[25]. In ecology, the Elman [26] and recurrent [27] networks have been used for 
predicting the time-series data for community dynamics. These networks, 
however, were mainly used for training with the templates (i.e., supervised 
learning). In real situations, however, there are numerous patterns in behavioural 
data. Consequently it is difficult to have all the pre-determined patterns be ready 
for training, considering that a huge amount of behavioural data could be 
accumulated through the real-time, continuous recording. Data mining would be 
desired to provide the overall scope of the behavioral data. In this regard, we 
incorporated the unsupervised network to accommodate the sequential line-
movement data of specimens collected from continuous recording. 
     Temporal Kohonen Map (TKM) [28], being derived from the Kohonen Self-
Organizing Map [29, 30], has been regarded as an efficient learning tool for TSP. 
In the TKM the involvement of the earlier input vectors in each unit is 
represented by using recursive difference. An unsupervised temporal model, 
Recurrent Self-Organizing Map (RSOM), was further proposed to provide more 
flexibly in dealing with the sequential data. RSOM was originally designed by 
Varsta et al [31] and can be presented as an enhancement of the TKM algorithm. 
While TKM does not directly use the temporal contextual information of input 
sequences in weight updating [31], direct learning of the temporal context is 
possible with RSOM. It allows model building using a large amount of data with 
only a little a priori knowledge. RSOM provided promising results in dealing 
with classification of temporal data with simple property [31–33]. 
     In this study, we proposed RSOM for detecting temporal response behaviors 
of Lumbriculus variegatus treated with copper. We demonstrated that RSOM 
was feasible in patterning the sequential line-movement of oligochaetes after the 
treatments of toxic substances and efficiently characterize the stressful behaviors 
of the specimens.  

2 Materials and methods 

2.1 Observation system 

The body shape of the test specimens of Lumbriculus variegatus was recorded 
by using an observation system consisting of an observation aquarium, a camera 
and software for an image recognition system. During the observation period, 
groups and individuals of Lumbriculus were placed in a glass aquarium 
(diameter: 9 cm), and their position was scanned from top view in 0.25 sec 
intervals using a CCTV camera (Kukjae Electronics Co. Ltd.; IVC-841®) for two 
days (one day before the treatments and one day after the treatments). The analog 
data captured by the camera were digitized by using a video overlay board 
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(Sigmacom Co., LTD.; Sigma TVII®), and were sent to the image recognition 
system to digitize the line-movement of tested specimens. The software for 
detecting the specimens and other supporting mathematical programs were 
developed by the Neural Network and Real World Application Laboratory, 
Department of Computer Science and Engineering, Pusan National University. 
The stock populations were maintained in a glass tank, and were reared with 
artificial dry diet (Tetramin®) under the light condition (back light; twenty five 
0.2W green diodes vertically located underneath the observation cage 10 cm 
apart) of 24 hours. 

2.2 Computational method 

Self-Organizing Map (SOM) is a vector quantization method to map patterns 
from an input space iV  onto lower dimensional space MV  of the map such that 
the topological relationships between the inputs are preserved [29, 30] to find the 
best matching unit b in time step t in the following equation: 
 

       (1) 
 

where i∈ MV , )(tx  is an input vector, and )(twi  is a weight vector of the unit 
i in the map. Subsequently the weight vector of the best matching unit b is 
updated towards the given input vector )(tx  according to  
 
        (2) 

 
where )(tγ , 0< )(tγ ≤1, is a learning rate, and )(thb  is the neighbourhood 
function. 
     RSOM [31] is similar to the SOM except for the following difference 
equation, fig. 1: 
 

                                                           (3) 
 
where 0<α ≤1 is a leaking coefficient, )(tyi  is a leaked difference vector, 

)(twi  is the reference or weight vector in the unit i, and )(tx  is the input 
pattern in time step t.  The best matching unit b at time step t is searched by 
 

                                                                               (4) 
 

where i∈ MV . The process of updating weight is the same to SOM. However, 
the input sequence should be noticed before learning in a recurrent manner, 
fig. 1. The property of RSOM is described in reference articles in detail [31–33]. 
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Figure 1: Schematic picture of an RSOM unit acting as a recurrent filter [32]. 

     For input data, we obtained 13 x-y coordinates of the line shape of blackworm 
specimens through computer recognition system measured in every 0.25 s 
interval. The coordinates were converted to a line consisting of 12 sub-segments 
with 12 lengths and 11 angles, fig. 2. These features carried information on the 
line shape of Lumbriculus. The general difference of the body shape was 
observable before and after the treatments, fig. 3. The lengths of the body 
segments were similar, being consistently shortened after the treatments, 
fig. 3(a). In contrast, the angles were smaller close to the center of the body, 
fig. 3(b). The angles in all sub-segments also decreased consistently after the 
treatments. This indicated that the body of the treated blackworms tended to 
contract and fold strongly after the treatments. For training RSOM, the data for 
12 lengths and 11 angles were provided as input. The whole sequence of the line 
movement in two days (one day before the treatments and one day after the 
treatments) was divided into 100 sections with equal intervals (duration of 
ca 28.8 minutes). The line-data (12 lengths and 11 angles for the body segments, 
fig. 2) of the specimens at the beginning point was selected for the initial data for 
each section. Subsequently eleven more line data were selected in every 25 s 
interval in each section merged to the initial line-data. In total the 12 sequential 
line-data for 5 minutes (25 s X 12 = 300 s) were regarded as a sample unit 
provided to RSOM as input. Twenty specimens were observed for recording. 
Due to difficulty of detection of the line-shapes, however, some portion of data 
segments were not properly recorded due to noise. In this study we selected 6 
specimens with the full records of the sequence movement during the whole 
observation period. The overall movement patterns in the specimens not selected 
for training were in general similar to the patterns of the specimens used for 
training according to the preliminary studies.  
 

 
 

Figure 2: The body (bold line) of Lumbriculus variegatus consisting of 
12 sub-segments with the lengths (e.g., d1, d2, etc) and the angles 
(e.g., a1, a2, etc)  
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(b) 

Figure 3: Comparison of lengths and angles of the sub-segments of 
Lumbriculus before and after the treatments (a) Length, (b) Angle. 

3 Results 

For the purpose of patterning the sequential line-movements of Lumbriculus, we 
initially checked angle and length separately for training RSOM.  Subsequently 
length and angle were combined, and the whole data were trained with the 
network. 

3.1 Movement patterns based on angles 

The angle changes in the line-movements of the test specimens were accordingly 
grouped on RSOM, fig. 4(a), (b). According to the Ward’s linkage method 
calculated under MATLAB environment [34], the patterns were largely grouped 
into 4 patterns, fig. 4(a), (c). The horizontal gradient of the angle changes was 
observed from right to left area of the map. Angle changes in the body segments 
were minimal in the right area, while the specimens’ body shape was more 
folded in the left area as shown in, fig. 4(b).  
     The samples were divided to two main clusters on the map. In the right area, 
cluster B occupied a large area. In this cluster, the stretched line shape was 
mainly observed in the movement of the specimens, fig. 4(b). The segments 
before the treatments (white circle) were dominantly grouped in cluster B. The 
other cluster A occupied a broad area of the map at the left hand side. The folded 
body shapes were abundantly observed in this cluster. The cluster A was sub-
clustered to smaller groups, AI and AII. The gradients were also observed 
between the sub-clusters. The highly folded ones appeared in the sub-cluster AI 
at the bottom left area of the map, while the data segments with less folded 
shapes were grouped in subcluster AII, fig. 4(b). The cluster AII was further 
divided to sub-sub-clusters, AIIa and AIIb. The segments in cluster AIIa in the 
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top area were presented by partial folding in the body segments, while the body 
segments in AIIb were characterized by the “U” shape, fig. 4(b). In cluster AI, 
the segments after the treatments (dark circle) were dominantly grouped. The 
segments in cluster AII were mixed between ‘before’ and ‘after’ the treatments. 
 
 

 

 

  

Figure 4: (a) Grouping of the sequential line-movements of Lumbriculus 
specimens after training with RSOM based on angles of body 
segments (Clustering carried out on the patterned nodes by the 
Ward linkage method. White and black circles indicate the 
segments obtained from ‘before’ and ‘after’ the treatments 
respectively. Size of the circles indicates the number of line 
segments grouped in the RSOM units relatively (Max. number of 
the samples grouped in one unit; 120)). (b) Time sequence of the 
line-movements of Lumbriculus in different clusters listed on 
fig. 4(a) (c) Dendrogram of the RSOM units on fig. 4(a), by the 
Ward’s linkage method. 
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(a) 

 

 
(b)                                                           (c) 

Figure 5: (a) Grouping of the sequential line-movements of Lumbriculus 
specimens after training with RSOM based on lengths of body 
segments (Clustering carried out on the patterned nodes by the 
Ward linkage method. White and black circles are explained in 
fig. 4 (Max. number of the samples grouped in one unit; 120)). 
(b) Time sequence of the line-movements of Lumbriculus in 
different clusters listed on fig. 5(a) (c) Dendrogram of the RSOM 
units in fig. 5(a) by the Ward’s linkage method. 

3.2 Movement patterns based on lengths 

The changes in length of the body segments of the blackworm specimens were 
also accordingly grouped on RSOM, fig. 5(a), (b). According to Ward’s linkage 
method, the patterns were grouped to 4 patterns, fig. 5(a), (c). In this case the 
gradient of the length was observed diagonally. From bottom left to top right on 
the map, the length of body segments accordingly decreased, fig. 5(a), (b). The 
patterned samples were divided to two large clusters, C and D. In cluster C 
occupying a large area in the bottom left area, the samples with long body 
segments were characteristically observed. Cluster C was further divided to two 
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sub-clusters, CI and CII, depending upon the degree of length. In cluster CI at 
the bottom left corner, the segment length was in the maximum range while the 
specimen’s body was close to the line-shape without much folding, fig. 5(a), (b). 
The body length in cluster CII was relatively more contracted than in cluster CI, 
fig. 5(b). In cluster CI, the body segments before the treatments were more 
abundantly observed. However, some body segments after the treatments also 
occurred in this cluster. In cluster CII, the body segments before the treatments 
were abundant but were mixed with the body segments after the treatment in 
some degree.  
     In cluster D close to the upper right area of the map, the contracted forms of 
body segments were strongly grouped. Especially in cluster DI, the specimens 
highly contracted and folded. In cluster DII, the body segments were less 
contracted. In cluster DI, the segments after the treatments were strongly 
grouped. The segments after the treatments were still dominant in cluster DII. It 
appeared that the degree of grouping was stronger for the body segments after 
the treatments (i.e., DI and DII) than before the treatments (i.e., CI and CII).  

3.3 Movement patterns based on combination of angles and lengths 

The data for angles and lengths of the body segments of the blackworm 
specimens were combined and were subsequently used for training RSOM, 
fig. 6(a), (b), (c). Clustering appeared in a characteristic manner more diversely 
compared with separate patterning by angles, fig. 4, and lengths, fig. 5. 
According to the Ward’s linkage method, the samples were divided to 6 groups, 
with inclusion of sub- and sub-sub-clusters, fig. 6(a), (c).  
     Although clustering was diverse, the gradient was still observed diagonally 
from bottom left to top right on the map. While the body segments with larger 
and less folded bodies were observed in cluster F in the area of bottom right, the 
shorter and strongly folded bodies were placed in cluster E in the area of top left, 
fig. 6(a), (b).  
     Sub-clusters were similarly divided according to degree of contraction and 
folding. In cluster FI at the bottom right corner, the longer and less curved 
specimens were observed. The sub-cluster FI was further divided according to 
the line shape of the specimens. While more straight forms were allowed in the 
body segments in sub-sub-cluster FIa, folding (e.g., the fifth snap shot in FIb, 
fig. 6b) was produced in the sequence of the line-movement in the sub-sub-
cluster FIb.  
     Sub-cluster, FII, was differentiated from FI regarding the stronger degree of 
contraction and folding. The gradient was further observed in division of sub-
clusters. In sub-sub-cluster FIIa, the body segments were strongly contracted and 
folded. In sub-sub-cluster FIIb, however, the shape of the body segments was 
relatively longer and somewhat similar to the body segments shown in sub-
cluster FI. Clear difference of the body segments between these two clusters 
needs more verification, but the body segments in cluster FIIb appeared to 
include the more contracted segments (e.g., the sixth snap shot in FIIb, fig. 6(b) 
during the course of sequential movement.  
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(b)                                                              (c) 

Figure 6: (a) Grouping of the sequential line-movements of Lumbriculus 
specimens after training with RSOM based on angles and lengths 
of body segments (Clustering carried out on the patterned nodes by 
the Ward linkage method. White and black circles are explained in 
fig. 4 (Max. number of the samples grouped in one unit; 100)). 
(b) Time sequence of the line-movements of Lumbriculus in 
different clusters listed on fig. 6(a) (c) Dendrogram of the RSOM 
units in fig. 6(a) by the Ward’s linkage method. 

     In cluster E, the samples showed the strongly contracted and folded bodies, 
fig. 6(b). In the body segments belonging to sub-cluster EI, the length was in the 
least range while the degree of folding was in the highest range. Almost all the 
grouped samples in this cluster were the line-movements after the treatments. In 
sub-cluster EII, the body was less contracted and the degree of folding decreased, 
but the samples were still dominated by the line-movement after the treatments. 
The sequential movement in the contracted and folded forms of the treated 
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specimens was accordingly revealed in clusters EI and EII. This demonstrated 
that RSOM would efficiently visualize the symptomatic movements of 
blackworms after exposure to copper. In contrast to cluster E, the samples before 
the treatments were more abundantly observed in the areas of cluster F 
(e.g., upper area in FIIb), however the segments after the treatments were also 
included in some degree. Overall, classification was more discernible with the 
body segments after the treatments for the combined data of angles and lengths.   

4 Discussion and conclusions 

In this study we used a species in oligochates, Limnodurlus variegatus, for 
continuous monitoring of temporal line-movement in response behaviors to the 
treatments of toxic substances. RSOM was feasible in classifying the sequential 
line-movements of the blackworms. To the best of our knowledge, no 
computational method has been carried out on patterning behaviors of 
blackworms with temporal movement, fig. 4, 5 and 6. This type of the line 
patterning would be useful for monitoring behavioral changes in animals with 
long body shapes (e.g., other annelids, snakes, eels, etc) in the future. If the lines 
are detected instead of the points, the scope in movement changes would be 
broader in providing diverse information on movement. 
     We analysed the response behaviors based on separate criteria, angle and 
length. Firstly, patterns of body folding were accordingly revealed by training 
with the angle data, fig. 4(b), by the trained RSOM. With the data for the lengths 
subsequently, fig. 5(b), the ‘line’ part was more clearly identified: the straight 
lines (e.g., CI in fig. 5(b)) were efficiently grouped. In the data for angles, 
fig 4(b), however, the straight segments shown in CI were not observed. 
Conversely, the highly folded ones (e.g., A1 in fig. 4(b)) were not observed in 
fig. 5(b). RSOM was efficient in extracting information from complex data 
accordingly to characteristics of input variables.  
     We used blackworms for indicator species for behaviour monitoring. Aquatic 
oligochaetes, such as Lumbriculus, are important taxa in freshwater aquatic 
communities. The oligochaetes serve diverse roles as aiding in decomposition of 
organic materials in the sediment. Lumbriculus variegatus has been proposed as 
a standard organism for sediment bioaccumulation tests [35]. Researchers 
reported that Lumbriculus have several locomotor behaviors such as rapid 
withdrawal, crawling, body reversal, and helical swimming. There are 
stereotyped behaviors that can be used for the sub-lethal toxicology [36, 37]. In 
this study RSOM was feasible in identifying some symptomatic sequence of 
line-movements of blackworms, fig. 4, 5 and 6, and the results from our study 
confirmed the toxicological effect of black worms on behaviours.  
     In this study we used copper as a toxic agent. Copper has commonly been 
used for fertilizers, and especially pesticides due to its antifungal properties [38]. 
Excessive levels can contaminate aquatic ecosystems [38, 39] even though it is 
an essential trace element. Sub-lethal copper exposure alters a number of 
behaviors in invertebrates. Locomotor behavior can also be adversely affected by 
copper exposure [40–43]. Bruce et al [44] reported that copper exposure can 
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significantly affect the ability of aquatic oligochaetes to avoid predators. We 
were able to demonstrate that copper would cause typical symptomatic 
behaviours in temporal sequence of line-movement of blackworms by using 
RSOM.  
     In conclusion, RSOM, was feasible in addressing the sequential line-
movements of stressful behaviors of blackworms such as body contraction, high 
degree of folding, etc. The temporal patterns of body shapes after the treatments 
were more strongly grouped than the temporal patterns before the treatments. 
The recurrent unsupervised model in ANNs used in this study would be an 
efficient tool for identifying temporal behavior patterns of indicator specimens 
and could be used as an in-situ real-time monitoring device in aquatic 
ecosystems in the future.  
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