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Abstract 

Eutrophication can be controlled by denitrification which is complex microbial 
processes converting nitrate to nitrogen gas in water body. Various 
environmental factors such as oxygen, available carbon and pH are known to 
regulate denitrification rate. However, those controlling variables affect 
denitrification rates nonlinearly. Further, interactions between those factors 
hinder a good prediction on the rate. As such, conventional mechanistic 
modeling of denitrification often fails to fit with data collected from fields. 
     In this study, we applied artificial neural networks to elucidate complex 
relationships between denitrification rate and environmental factors. A Multi-
Layer Perceptron network based on the back-propagation algorithm was utilized 
for prediction of denitrification rate. High predictability of denitrification was 
achieved with R=0.910 with the trained network. Subsequently, sensitivity 
analysis was carried out to evaluate factors predominantly controlling 
denitrification rates. A sensitivity analysis exhibited that DO exert a dominant 
controlling effect on denitrification rate over other environmental factors. 
Keywords:   denitrification, eutrophic wetland, artificial neural networks. 

1 Introduction 

Aquatic ecosystems near agricultural or urban systems can be polluted by a high 
loading of nitrogen, which often results in eutrophication in summer season. 
Since eutrophication causes oxygen depletion, fish kill and odor, many studies 

 © 2006 WIT PressWIT Transactions on Biomedicine and Health, Vol 10,
 www.witpress.com, ISSN 1743-3525 (on-line) 

Environmental Toxicology  67

doi:10.2495/ETOX060081



have focused on economical methods to control eutrophication from nitrogen 
loading [1, 2]. 
     Wetlands, placed between upland and aquatic systems, are known to control 
eutrophication by removal of N through various mechanisms including 
denitrification [3, 4]. Denitrification has been considered as a major mechanism 
for N removal, and wetlands are known to be a hotspot of denitrification [5, 6]. 
In a wetland where anaerobic conditions are easily introduced, many facultative 
microorganisms, called denitrifying bacteria, can use nitrate as an electron 
acceptor and remove the nitrogen from water [5, 7]. High organic matter content, 
nitrate input and development of rhizosphere with anaerobic condition also 
induce high denitrification rate [4, 8–10]. Denitrifying Enzyme Activity (DEA) 
reflects the amount of denitrifying enzymes in soil, and it is often correlated with 
denitrification rate positively [6, 11]. 
     In wetlands, denitrification rates often exhibit extremely high variations both 
temporally and spatially, due to heterogeneity of environmental conditions. 
Although many controlling variables of denitrification have already been 
reported, models for denitrification are still empirically based. Several studies 
have proposed mechanistic models but they require a large amount of data sets as 
well as many assumptions [12–15]. As such, conventional modeling often fails to 
provide a powerful explanation for denitrification in wetlands.  
     An Artificial Neural Networks’ (ANNs) approach based on human brain 
performance has been applied to various types of ecological data successfully 
(e.g., [16–19]). In most of the previous studies, ANNs have been applied to 
biological indicator with environmental factors such as the occurrence of river 
bird distributions [20], benthic insect species [18], trout density [16], and 
phytoplankton production [19]. Recently, the applications of ANNs have been 
accelerated to environmental science. ANNs have been successfully applied to 
climate change simulation [21], nutrient cycling [15, 22] and water quality [23–
25]. According to the previous studies, ANNs have often shown better 
predictions for ecological data than classical linear or logistic regression models 
[20, 26, 27]. A Multi-Layer Perceptron (MLP), which is one of the most popular 
neural networks, operates under a supervised learning procedure to minimize the 
errors between the actual and target values based on the back-propagation 
algorithm [15, 26]. Sensitivity analysis in neural networks such as the ‘Weight’ 
and ‘Profile’ methods can additionally explain the inter connection weights of 
each input-hidden-output layer and the responses of the output according to the 
changes of input variables, respectively [16, 17, 27]. 
     In this study, we aimed 1) to apply ANNs to simulate denitrification rates in 
the eutrophic constructed-wetland, and 2) to determine key controlling variables 
for denitrification.  

2 Materials and methods 

2.1 Mesocosm operation 

To investigate denitrification in eutrophic states in the constructed wetlands, 
mesocosm-scale wetlands were built at Ewha Womans University in South 
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Korea. Wetlands were composed of two types, namely a marsh characterized 
with shallow water and vegetation, and a pond with deep water without 
vegetation [1]. We planted 30 Phragmites australis in marsh mesocosm which 
contains 608 L of water, while pond was filled with 1301 L of water. The 
retention times were ca. 3 days in marsh and ca. 5 days in pond due to 
differences in water volume. Contaminated inflow water was prepared by adding 
ammonia-nitrate (10 mg-N L-1).  

2.2 Sampling and analysis 

Water and soil samplings and subsequent analyses were conducted once a week 
for 2 years except winter to early spring seasons. Water temperature, pH and 
dissolved oxygen (DO) were measured in situ. Soil samples were collected to 
5 cm depth from the surface in each mesocosm. After removing the large 
fragments of detritus and roots, all soils were maintained at 4°C until analysis of 
denitrification. Denitrification rate and DEA were determined by an acetylene 
blocking method. Approximately 10 g of soil for denitrification and 5 g for DEA 
with glucose and nitrate were placed in a 100 ml sterilized glass vial and 
incubated for 20 min with oxygen-free N2 gas purge at 20°C. After acetylene 
(10%, v/v) addition in the head space, cumulative nitrous oxide concentration in 
head space collected within 2 hours was measured by gas chromatography 
equipped with ECD (HP-6890) [28].  
 

 
 
Figure 1: Conceptual structure of MLP used for predicting denitrification 

(modified from [17, 29]). 

2.3 Application of Artificial Neural Networks   

Basic structure of MLP in this study was present in Fig. 1. Water temperature 
(°C), DO (mg L-1), pH and DEA were chosen as input data (4 nodes). 
Denitrification rate was used as an output (1 node). In this study, 6 hidden 
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neurons were chosen for the learning procedure, and iteration was performed 
3000 times. For training the momentum (0.95 in this study) was used for the 
learning procedure, while the learning rate was initially set to 0.75 and was 
gradually decreased as convergence was achieved. The trained MLP was tested 
by the ‘leave one out’ method using MATLAB ver.6.1. For sensitivity analysis, 
the ‘Weight’ and ‘Profile’ methods were used [16, 27]. The ‘Weight’ method 
involves the weight calculations in hidden-output neuron connections during the 
whole iteration procedure. The ‘Profile’ method considers the influence of the 
certain variations of each input variables between minimum and maximum 
values while the remaining input variables are fixed [16]. 

3 Results 

3.1 Mesocosm operation 

Table 1 presents the environmental characteristics and denitrification in wetlands 
from May, 2004 to November, 2005. Water temperature varied between 2.5 and 
28.1°C while the median value was 22.7°C during the observation period. pH in 
wetlands was neutral and slightly alkaline ranging 6.3–9.8 with the median value 
of 7.0. The pH peaked in June, 2004 and 2005 in concomitant with algal 
blooming. DO ranged between 0.4 to 9.8 mg L-1. DO was dropped to 0.4 on 
August, 2005, while the highest value was recorded in May, 2005 (Fig. 2). 
Denitrification rates showed high variations from 0.3 to 1559.6 ng N2O hr-1 g-1. 
Denitrification rates exhibited the highest in July while it was the lowest in the 
spring and early winter. The median value of DEA was 4072 ng N2O hr-1 g-1.  

Table 1:  Environmental characteristics and denitrification rate in the 
eutrophic constructed-wetlands during the whole operation period 
in 2004 and 2005.  

  Median Min. Max. 

Temp (°C) 22.7 2.5 28.1 
DO (mg L-1) 4.3 0.4 12.3 
pH 7 6.3 9.8 
DEA (ng N2O h-1 g-1) 4072 7.3 16261 
Denitrification rate  
(ng N2O h-1 g-1) 18.2 0.3 1559.6 

 
 

3.2 Application of ANNs 

The MLP showed high predictability after training. The estimated and observed 
values were correlated with R = 0.910 (P<0.001) after 3000 iterations based on 
the test of the ‘leave one out’ method (Fig. 3).  
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Figure 2: Seasonal variations of averaged temperature and DO during the 
wetland operation period. The data chosen as input for the MLP 
training are exhibited. 
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Figure 3: Estimated and observed values tested by MLP using the ‘leave one 
out’ method (n=95). The solid line represents the 1:1 between 
estimated and observed values.  

     In order to elucidate the importance of input variables, sensitivity analyses 
based on ‘Weight’ and ‘Profile’ were carried out. According to the ‘Weight’ 
analysis, DO was the predominant factor being followed by pH, while 
temperature and DEA weakly contributed to determination of denitrification. 
Percents of contribution of DO and pH were 45% and 30%, respectively, 
whereas percents of contribution of temperature and DEA were ca. 10% for both 
factors (Fig. 4). Fig. 5 shows the contribution profile of the input variables in 
determining changes in denitrification according to the ‘Profile’ analysis. The 
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degree of contribution of Oxygen to denitrification decreased monotonically 
along with the increase in the levels of Oxygen. In contrast, the degree of 
contribution of pH increased rapidly until pH reached the middle range. From the 
middle point on, contribution of pH remained in the same range.  
 

 

Figure 4: Relative contribution of input variables according to the ‘Weight’ 
sensitivity analysis. 

 

Figure 5: Contribution profile over the scale of the different input variables in 
determining changes in denitrification. 

4 Discussion and conclusion 

High predictability of denitrification in eutropic wetlands was achieved with the 
trained artificial neural networks. This study demonstrated that MLP could be 
efficiently utilized for analyzing complexity residing in the data related to 
eutropic states in wetlands. 

 © 2006 WIT PressWIT Transactions on Biomedicine and Health, Vol 10,
 www.witpress.com, ISSN 1743-3525 (on-line) 

72  Environmental Toxicology



     The sensitivity analyses could provide a comprehensive view on the overall 
scope of input-output relationships (i.e., profile) representing the whole network 
procedure and specific information on the degree of contribution (i.e., weight) 
according to local changes in the input variables as well [16]. According to the 
‘Weight’ analysis, DO and pH predominantly contributed to changes in 
denitrification (Fig. 4), whereas contribution of the other input variables was 
minimal. The results were coincident with the results from the ‘Profile’ method. 
Denitrification exhibited steep changes according to the changes in DO and pH 
(Fig. 5). The high contribution of DO could be explained from the fact that 
denitrification may be discernable when DO is low, regarding that denitrification 
would be strongly inhibited under high DO levels [30, 31].  
     The result of pH on the ‘Profile’ analysis demonstrated that denitrification 
might be inhibited under low pH but will be stimulated along with the increase in 
pH. However, this positive relation between pH and denitrification became 
constant from middle range of pH since neutral or slightly alkaline conditions 
were in the optimum range for denitrification [4, 32]. Some researchers reported 
that denitrification decreased in acidic condition [33] while denitrification is 
facilitated in alkaline condition [34, 35]. Considering these reports, 
denitrification would not be further enhanced over the optimum range of pH, 
while denitrification would greatly increase as pH increased from low to medium 
values. The results from our study confirmed the reports in previous studies on 
the relationships between pH and denitrification.  
     The low contribution of temperature shown in the sensitivity analyses (Figs. 4 
and 5), on the other hands, implies that temperature might not be a key variable 
in controlling the states of denitrification in the eutrophic wetlands tested in this 
study. This low contribution of temperature can be explained as follows. Firstly, 
we did not consider the condition of highly low temperatures in winter for this 
study. Generally, denitrification ceased below 5°C, while it increased with higher 
levels of temperature [30, 33, 36]. However, temperatures measured in this study 
were in the narrow range because we only operated the wetlands from late spring 
to autumn (for 2 years) (Fig. 2). Since the input data only covered the given 
range, the ‘Weight’ and ‘Profile’ sensitivity methods could not reveal the effect 
of temperature beyond the range of temperatures used for the test in this study. 
Secondly, the effect of temperature in previous studies might be over-estimated. 
Some researchers reported the highest denitrification rate in winter [37, 38]. The 
reviews of Q10 of the treatment wetlands near 1.0 [3, 39] exhibited that 
temperature effect can be estimated to be too high. The effect of temperature was 
also often confounded with other seasonal effects [6, 39] involving light 
intensity, vegetation growth, etc. Therefore, low contribution of temperature in 
the limited range indicates that denitrification is not highly sensitive to seasonal 
variables such as DOC supply, microbial activity or plant growth in this study. It 
indicates that substrates [8, 40] for denitrification could not be limited in our 
wetlands due to eutrophication. Eutrophication was also influential in keeping 
DEA from contributing to denitrification. DEA is highly dependent on nitrate 
and carbon availability [6, 10]. However, the nutrient sources such as nitrate or 
carbon could not be a limiting factor in eutrophication. Consequently, 
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denitrification could not be influenced by DEA in the eutrophic wetlands tested 
in this study.  
     In summary, denitrification in mesocosm-scale eutrophic wetlands was well 
predicted using the trained MLP. The results of sensitivity analysis exhibited 
that, under the condition of the limited range in temperature, DO and pH exert a 
dominant controlling effect on denitrification rate over other environmental 
factors in this study. In addition, the sensitivity analysis such as the ‘Profile’ and 
‘Weight’ methods appeared to be useful for understanding both the overall scope 
of the environment-denitrification relationships and specific information on local 
contribution of input variables in determining denitrification. The results of this 
study suggest ANNs could be a powerful modeling tool to explain complexity 
residing in ecological data.  
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