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ABSTRACT 
Improving efficiency in vertical axis wind turbines (VAWTs), represented by the Savonius wind 
turbine, is desired with the increase in attention to renewable energy. The Ugrinsky wind turbine is a 
type of VAWT, which has a pair of blades consisting of a semicircle and a circular arc smoothly 
connected and is expected to have better performance than the Savonius wind turbine with producing 
positive torque at all angles in a rotation although there are few studies on this Ugrinsky wind turbine. 
Our prior research has shown that the maximum output power coefficient of the Ugrinsky wind turbine 
reaches 0.170, 43.0% higher than that of the Savonius model (0.110), and sustained its high-power 
coefficient in a wide range of tip speed ratios (TSR). This is due to both of the semicircular blades 
producing a positive torque during the advancing blade, whereas during the returning blade only the 
larger radius blade mainly produces a negative torque because of its overlapping layout. In this study, 
the dimensions of the two semicircles of the Ugrinsky wind turbine are optimised to obtain a higher 
power coefficient. The flow around the turbine was simulated by using the regularized lattice 
Boltzmann method. The virtual flux method was used to describe the shape of the turbine on Cartesian 
grids, and the multi-block method was used for the local fine grids around the turbine. The rotational 
speed of the turbine was maintained as a constant, and its performance was evaluated by the output 
power and torque coefficients. The results show that compared to the original Ugrinsky wind turbine 
model, the maximum power coefficient was improved by 1.5%, and the average value of the power 
coefficient for neighbouring tip speed ratios was improved by 5.9%. 
Keywords:  vertical axis wind turbine (VAWT), Ugrinsky wind turbine, Savonius wind turbine, drag-
type wind turbine, power coefficient, torque coefficient. 

1  INTRODUCTION 
In recent years, wind energy has gained a lot of attention as a means of renewable energy 
resource to combat climate change and pollution. In the Sustainable Development Scenario 
presented by the International Energy Agency (IEA), wind energy provides 21% of electricity 
in 2040, yet as of 2018 this rate is merely 5% [1]; hence further innovation in this field is 
required.  Wind turbines can be classified into two categories depending on their rotational 
axes: horizontal axis wind turbines (HAWTs), and vertical axis wind turbines (VAWTs). The 
propeller wind turbine is considered to be the standard of HAWTs and is widely used in 
large-scale electricity generation due to its high output power coefficient [2]. Compared to 
HAWTs, VAWTs are often favoured in small-scale power generation and have the advantage 
of being omnidirectional (independent of wind direction) [3]. VAWTs can also be divided 
into drag-type and lift-type depending on the aerodynamic force that drives the rotation [2]. 
In general, lift-types are known to be more efficient than drag-types, though normally they 
generate low torque in low tip speed ratios (TSRs) and are consequently unsuitable for self-
start [4]. In contrast, the Savonius wind turbines, the standard of drag-type VAWTs, are 
known for (i) high start-up torque, (ii) no low-frequency noise pollution, (iii) simple and low-
cost design and (iv) operation in a wide range of wind conditions compared to lift-type 
VAWTs [5], [6].  
     Advantages of being omnidirectional, (i), (ii) and (iv), make drag-type VAWTs an ideal 
option for installing wind turbines in urban environments, with increased interest in 
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employing wind turbines in urban environments in recent years [7]–[9]. However, their 
output power coefficient is generally poor compared to that of the propeller type by less than 
half [10]. Therefore, a large variety of studies are directed towards finding a better design for 
VAWTs. One example of this is installing shields or plates in front of the turbine [11], [12]. 
However, installing obstacles for improving efficiency will lose the independence of the wind 
direction, and will require additional land area. Thus, modifying the blade shape is the most 
effective method for improving its efficiency while ensuring the independence of the wind 
direction. Zhang et al. [6] improved the power coefficient by 6% while simultaneously 
reducing the blade weight by 17.9%, by using a quadratic polynomial curve on a blade shape 
of the traditional Savonius-style turbine. Roy and Ducoin [13] came up with a novel two-
bladed Savonius-style wind turbine and were able to improve the power coefficient by 32.1% 
compared to the traditional Savonius counterpart. Matsui et al. [14] added a set of sub blades 
to a two-blade VAWT similar to a Bach-type wind turbine and by optimising the position of 
them, the power coefficient reached 50.7% higher than that of the traditional Savonius 
turbine. 
     The Ugrinsky wind turbine is a type of VAWT, which has a pair of blades consisting of a 
semicircle and a circular arc that shares the same diameter as the turbine [15]. The turbine 
performs better than the traditional Savonius wind turbine by 43.2%; moreover, producing 
positive torque at all angles throughout a cycle at λ＝0.5 [16]. However, so far, there are few 
studies on this turbine, and no usage example as an electrical generation was found. With its 
high efficiency compared to the Savonius model, this turbine can potentially be a viable 
option for the future installation of VAWTs. In this paper, the optimisation for the two 
circle’s dimensions is conducted to improve the power coefficient. 

2  NUMERICAL METHODS 
The regularized lattice Boltzmann method (RLBM) is used as a governing equation in this 
paper [17], [18]. The virtual flux method is used to describe the blades of the turbines on a 
Cartesian grid [19]. The multi-block method is used for the locally fine grids around the 
turbines [20]. The simulation was conducted in 2-D, which is known to give acceptable 
results and shares the performance characteristics with 3-D simulation [3], [5]. 

2.1  Regularized lattice Boltzmann method 

The RLBM is used as a governing equation for the 2D 9-velocity (D2Q9) model for the fluid 
analysis. This method is designed to reduce memory usage and simulate flow at high 
Reynolds numbers without compromising accuracy compared to the lattice Boltzmann 
method [21]. 
     The distribution function 𝑓

𝛼
 is expressed as 

 𝑓𝛼 = 𝑤𝛼(𝑎0 + 𝑏𝑖𝑒𝛼𝑖 + 𝑐𝑖𝑗𝑒𝛼𝑖𝑒𝛼𝑗), (1) 

where 𝑤𝛼 is the weight coefficient defined by the lattice speed model (𝑤0 = 4/9, 𝑤1−4 =
1/9 , 𝑤5−9 = 1/36  for the D2Q9 model). 𝑎0 , 𝑏𝑖  and 𝑐𝑖𝑗  are determined to satisfy the 
following relationships: 

 ∑ 𝑓𝛼𝛼 = 𝜌, (2) 

 ∑ 𝑒𝛼𝑖𝑓𝛼𝛼 = 𝜌𝑢𝑖 , (3) 

 ∑ 𝑒𝛼𝑖𝑒𝛼𝑗𝑓𝛼𝛼 =
𝑐2

3
𝜌𝛿𝑖𝑗 + 𝜌𝑢𝑖𝑢𝑗 + 𝛱𝑖𝑗

neq
, (4) 
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where 𝜌 is the fluid density, 𝑢𝑖 is the fluid velocity component, 𝑐 is the lattice speed defined 
as 𝑐 = 𝛿𝑥/𝛿𝑡, 𝛿𝑖𝑗 is the Kronecker delta, and 𝛱𝑖𝑗

neqis the non-equilibrium part of the stress 
tensor. Then, the equilibrium distribution function 𝑓𝛼

eq, and the non-equilibrium part of the 
distribution function 𝑓𝛼

neq is expressed as follows: 

 𝑓𝛼
eq

= 𝑤𝛼𝜌 [1 +
3(𝑒𝛼𝑖𝑢𝑖)

𝑐2 +
9(𝑒𝛼𝑖𝑢𝑖)2

2𝑐4 −
3(𝑢𝑖𝑢𝑖)

2𝑐2 ], (5) 

 𝑓𝛼
neq

=
9𝑤𝛼

2𝑐2 (
𝑒𝛼𝑖𝑒𝛼𝑗

𝑐2 −
1

3
𝛿𝑖𝑗) 𝛱𝑖𝑗

neq
, (6) 

where the equilibrium distribution function 𝑓
𝛼
eq is expressed by approximating the Maxwell 

equilibrium distribution function to the quadratic term. Lastly, the time evolution equation in 
the regularized lattice Boltzmann equation is expressed as  

 𝑓𝛼(𝑡 + 𝛿𝑡, 𝒙 + 𝒆𝛼𝛿𝑡) = 𝑓𝛼
eq(𝑡, 𝒙) + (1 −

1

𝜏
) 𝑓𝛼

neq
, (7) 

where 𝜏 is the relaxation time. 

2.2  Virtual flux method 

The virtual flux method was used to describe the wind turbine shape in a Cartesian grid. This 
method was chosen due to its simplicity in the algorism with no iterative calculations. 
Moreover, this method can describe the pressure field around an object more accurately 
compared to other immersed boundary methods for the same grid resolution. Fig. 1 shows 
the schematic view of the virtual boundary points. With the lattice Boltzmann method using 
D2Q9model, virtual boundary points are set at the intersections of discrete velocities in eight 
directions and the object surface. 
 

 

Figure 1:  Schematic view of the turbine blade boundary on a Cartesian grid. 

     First, the physical quantity on the virtual boundary 𝑞vb  is considered. The no-slip 
boundary condition (𝒖vb = 𝒖wall) is applied for the velocity of the virtual boundary 𝒖vb, 
where 𝒖wall is the velocity on the wall surface of the turbine blade. The Neumann boundary 
condition (𝜕𝑝vb/𝜕𝒏 = 0) is applied for the pressure of the virtual boundary 𝑝vb, where 𝒏 is 
the normal vector on the virtual boundary wall, providing the approximate pressure condition 
on the surface. 
     Next, as shown in Fig. 2, the case where the distribution function at point “C” moves to 
point “B” is considered; however, this movement is obstructed by the virtual boundary. 
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Therefore, the virtual distribution function 𝑓𝛼,vb will be calculated at point “vb” from the 
distribution function 𝑓𝛼,B and the equilibrium distribution function 𝑓𝛼,B

eq  as follows: 

 𝑓𝛼,vb = 𝑓𝛼,vb
eq (𝑢vb, 𝑝vb) + (𝑓𝛼,B − 𝑓𝛼,B

eq
). (8) 

Then, the virtual distribution function 𝑓𝛼,C
∗  and the virtual equilibrium distribution function 

𝑓𝛼,C
eq∗ at point “C” are calculated by extrapolation using internal division ratios 𝑎 and 𝑏. 

 𝑓𝛼,C
∗ =

𝑎+𝑏

𝑎
𝑓𝛼,vb −

𝑏

𝑎
𝑓𝛼,B, (9) 

 𝑓𝛼,C
eq∗

=
𝑎+𝑏

𝑎
𝑓𝛼,vb

eq
−

𝑏

𝑎
𝑓𝛼,B

eq
. (10) 

Finally, the distribution function a point “B” for the next time step 𝑓𝛼,B is obtained from 𝑓𝛼,C
∗  

and 𝑓𝛼,C
eq∗ as follows: 

 𝑓𝛼,B = 𝑓𝛼,C +
1

𝜏
(𝑓𝛼,C

eq
− 𝑓𝛼,C

* ). (11) 

2.3  Computational models 

In this research, the flow around the Ugrinsky wind turbine with various dimensions is 
simulated and evaluated with the power coefficients and the torque coefficients. Fig. 2(a) 
shows the schematic view of the Ugrinsky wind turbine with the original dimensions, where 
D is the diameter of the turbine circle (drawn with a dashed line), S is the diameter of 
“Segment 1”, and L is the radius of “Segment 2”. In addition, the radius of the turbine R (= 
D/2) is used to describe the dimension of L in this paper. The original dimensions of the 
Ugrinsky wind turbine are (S, L) = (0.40D, 1.0R). Fig. 2(b) shows the Savonius model used 
in verification, where l is the blade length and e is the overlap ratio, which is set to 0.2l.  
 

 

Figure 2:    Schematic view of: (a) The Ugrinsky wind turbine at 0°; (b) The Savonius wind 
turbine at 0°; and (c) The multi-block model used in the simulation. 

     Fig. 2(c) shows the schematic view of the multi-block model for the simulation. The 
computational domain was set as 30D × 30D using the multi-block method and the 
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coordinates for the centre of the turbine was set at (10D, 15D). The convective flow condition 
was applied at the right-side outflow of the domain [22]. The velocity and the pressure 
gradients are both equal to 0 at the upper and lower sides of the domain. The Reynolds 
number is set as 1,000, based on the turbine’s diameter. The rotational speed was set as a 
constant value to satisfy the following TSRs: λ = 0.3, 0.4, …, 0.9. To reduce the calculation 
cost, multiple TSRs are calculated in sequence in this simulation. For example, for the case 
of the Segment 1 optimisation, λ = 0.7 is set as an initial TSR and nine cycles are performed 
in total, and the last three cycles are used for evaluation. Next, the blade rotational speed 
gradually decreases to meet λ = 0.6 at the beginning of the 10th cycle. Six cycles are 
performed including the last three cycles for evaluation for λ = 0.6. Then, the TSR is 
decreased to λ = 0.5 and calculation will be continued in the same way as λ = 0.6. This method 
is more effective than calculating each TSR individually since each calculation requires the 
preparation cycles for eliminating the initial condition at the beginning. The output of the 
evaluation cycles is averaged for the power coefficient values and the instantaneous torque 
plots. 
     The torque coefficient CQ, the power coefficient CP, and the TSR λ are defined as follows: 

 𝐶𝑄 =
𝑇

1

2
𝜌𝑈2𝑅𝐴

, (12) 

 𝐶𝑃 =
𝑇∙𝜔

1

2
𝜌𝑈3𝑅𝐴

= 𝐶𝑄 ∙ 𝜆, (13) 

 𝜆 =
𝑅𝜔

𝑈
, (14) 

where 𝑇 is the torque, 𝑈 is the characteristic velocity, 𝜔 is the angular velocity, and 𝐴 is the 
swept area. The optimal shape is selected by the maximum power coefficient value and the 
average value of the power coefficient for neighbouring TSRs. For example, the average 
value of the power coefficient for neighbouring TSRs at λ = 0.6 is the average value of the 
power coefficient of λ = 0.5, 0.6, and 0.7. By doing so, the TSR fluctuation of turbine occurs 
in experimental test due to non-uniform flow or changes in torque values with angle can be 
taken into consideration. 

2.4  Verification 

A verification study was conducted on a Savonius turbine shown in Fig. 2(b) for Reynolds 
number Re = 500 at the TSR λ = 0.8. The test was conducted with four different grids for the 
characteristic length (D = 256, 360, 512, 724 cells). Fig. 3 shows the torque coefficient of the 
6th rotation, and Table 1 shows the results of the averaged torque coefficient. The transition 
of the torque coefficient value and the angle of rotation at which the maximum and minimum 
values are obtained show the same trend as other studies [5], [6]. The number of grids 
required for the characteristic length is proportional to 𝑅𝑒1/2 times by the boundary layer 
thickness theory [23]. The average torque coefficient for D = 256 cells shows less than 3% 
of error compared to D = 724 cells at Re = 500; therefore, D = 360 cells were selected for  
Re = 1,000 condition.  

3  RESULTS AND DISCUSSION 
In this section, the effects of optimisation on Segment 1 and Segment 2 are discussed. The 
performance of the turbines is described in torque and power coefficients, and the pressure 
coefficient was used in the pressure contour diagram for visualisation. 
 

Energy and Sustainability IX  117

 
 www.witpress.com, ISSN 1743-3541 (on-line) 
WIT Transactions on Ecology and the Environment, Vol 254, © 2021 WIT Press



 

Figure 3:  Torque coefficient values for different resolutions. 

Table 1:  Averaged torque coefficient values for different resolutions. 

Number of grids for the 
characteristic length Averaged torque coefficient 

256 cells 0.042855 
360 cells 0.043666 
512 cells 0.044075 
724 cells 0.044173 

3.1  Optimisation for Segment 1 

Fig. 4 shows the comparisons of the average power coefficients of different diameters for 
Segment 1, and Table 2 highlights the maximum average power coefficients and the averaged 
power coefficient values of neighbouring TSRs. The highest power coefficient was achieved 
by S = 0.40D, the original Ugrinsky wind turbine model, and S = 0.35D both at λ = 0.5. 
However, while the S = 0.35D model maintains a high power coefficient over a wide range 
of TSRs, the S = 0.40D model decreases its power coefficient by a larger degree than the  
S = 0.35D model above λ = 0.5. The S = 0.35D model was selected for optimisation on 
Segment 2 judging from the maximum power coefficient at λ = 0.5 and the ability to maintain 
its high torque coefficient at λ = 0.5–0.7. 
     To further analyse the effect of Segment 1 on the Ugrinsky wind turbine, the instantaneous 
torque coefficient is plotted for S = 0.30D, 0.35D and 0.40D models for λ = 0.6 in Fig. 5. The 
torque coefficient plots were divided into Segment 1 and Segment 2 for easier understanding. 
Each corresponding pressure contour addressed in Fig. 5 is plotted in Fig. 8. 
     At 50°, there is no improvement in torque with the increase in S beyond S = 0.35D for 
Segment 1 (in Fig. 5 and Fig. 8 (A)). At 330°, S = 0.30D and 0.35D produces smaller negative 
torque compared to S = 0.40D on Segment 1. This is due to the narrow wind-receiving area 
of Segment 1 during the return blade period; furthermore, positive torque was produced due 
to the negative pressure area created on the convex part of Segment 1 for S = 0.30D and 
0.35D (in Fig. 5 (B)). 
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Figure 4:    Power coefficient values of the Ugrinsky wind turbine models with different 
diameters for Segment 1 in dynamic simulation. CP at λ = 0.8 was calculated 
only for S = 0.30D to display its peak TSR. 

Table 2:   Maximum power coefficient values and the average value of the power coefficient 
for neighbouring TSRs of different diameters S for Segment 1. 

S Maximum CP Average CP 
0.25D 0.153 (λ = 0.6) 0.152 (λ = 0.5–0.7) 
0.30D 0.173 (λ = 0.7) 0.167 (λ = 0.5–0.7) 
0.35D 0.181 (λ = 0.5) 0.179 (λ = 0.5–0.7) 
0.40D 0.182 (λ = 0.5) 0.169 (λ = 0.5–0.7) 
0.45D 0.123 (λ = 0.5) 0.116 (λ = 0.4–0.6) 

 

 

Figure 5:    Comparison of the torque coefficient at different rotor angle for S = 0.30D, 
0.35D and 0.40D at λ = 0.6. 

0.3 0.4 0.5 0.6 0.7 0.8
Tip Speed Ratio [-]l

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Po
w

er
C

oe
ff

ic
ie

nt
[-

]
C

P

S D= 0.25
S D= 0.30
S D= 0.35

S D= 0.40
S D= 0.45

0 45 90 135 180 225 270 315 360
Angle [deg]

-1.0

-0.5

0.0

0.5

1.0

To
rq

ue
C

oe
ff

ic
ie

nt
[-

]
C

Q

l = 0.6, Blade A

S D= 0.30 Seg.1
S D= 0.30 Seg.2

S D= 0.35 Seg.1
S D= 0.35 Seg.2

S D= 0.40 Seg.1
S D= 0.40 Seg.2

A 

B 

Energy and Sustainability IX  119

 
 www.witpress.com, ISSN 1743-3541 (on-line) 
WIT Transactions on Ecology and the Environment, Vol 254, © 2021 WIT Press



3.2  Optimisation for Segment 2 

Fig. 6 shows the comparison of the average power coefficients of different radii for Segment 
2, and Table 3 highlights the maximum average power coefficients and the average value of 
the power coefficient for neighbouring TSRs. Overall, by changing L from the original value 
(L = 1.0R), the TSR for the peak power coefficient value increases. Notably, the L = 1.1R 
and 1.2R models show similar characteristics and both models hit a low power coefficient 
value at λ = 0.6 compared to the other models. 
 

 

Figure 6:    Power coefficient values of the Ugrinsky wind turbine model with different radii 
for Segment 2 in dynamic simulation. 

Table 3:   Maximum power coefficient values and the average value of the power coefficient 
for neighbouring TSRs of different radii L for Segment 2. 

L Maximum CP Average CP 
0.9R 0.179 (λ = 0.6) 0.175 (λ = 0.5–0.7) 
1.0R 0.181 (λ = 0.5) 0.179 (λ = 0.5–0.7) 
1.1R 0.181 (λ = 0.7) 0.173 (λ = 0.5–0.7) 
1.2R 0.178 (λ = 0.7) 0.171 (λ = 0.5–0.7) 
1.3R 0.185 (λ = 0.6) 0.176 (λ = 0.4–0.6) 

 
     To understand why the L = 1.1R and 1.2R models were inferior to L = 1.0R or 1.3R at  
λ = 0.6, L = 1.0R, 1.1R and 1.3R were chosen for the comparison in Fig. 7. As shown in Fig. 
7, the L = 1.1R model has a different characteristic compared to others. In order to visualise 
the characteristic difference, the pressure distribution of the wake flow of the rotor for 100° 
and 280° for the L = 1.0R, 1.1R and 1.3R models were shown in Fig. 8 (C) and (D), 
respectively. At 280°, it can be seen that the vortex detached from the tip of Blade A Segment 
2 moves to the wake region regardless of L (purple circle). On the other hand, at 100°, while 
L = 1.1R model’s vortex characteristic is the same as at 280°, the vortex generated by Blade  
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Figure 7:    Comparison of the torque coefficient at different rotor angles for L = 1.0R, 1.1R 
and 1.3R at the tip speed ratio λ = 0.6. 

B Segment 2 remains attached and rotate with Blade B for L = 1.0R and 1.3R (red circle).Due 
to the fluid-structure difference outlined above, in the advancing blade region of Segment 1 
on Blade A (45–135°), a large vortex is generated for L = 1.0R and 1.3R at the tip of Segment 
1 (in Fig. 7 and 8 (C), black circle). This vortex creates a low-pressure area on the convex 
side of Segment 1, consequently developing large torque on the blade. Likewise, a larger 
vortex is observed at the tip of Blade A, Segment 2 for L = 1.0R and 1.3R compared to  
L = 1.1R at 190°, developing high torque on the blade for these models (in Fig. 7 and 8 (E)). 
Generally, the larger L is, the greater the torque produced by the blades, due to the increase 
in arm length; however, the fluid-structure properties are more dominant than geometrical 
properties in λ = 0.6, and therefore this phenomenon, where the L=1.0R model performs better 
than the L = 1.1R model, was observed at this angle. 

4  CONCLUSIONS AND FUTURE WORK 
In this paper, the flow around the Ugrinsky wind turbine with various blade dimensions was 
simulated to investigate the optimal shape. For optimization, the optimal diameter of S was 
first selected, and then the optimal radius of L was selected through simulations. Maximum 
power coefficient and stability of power coefficient in neighbouring TSRs were employed 
for the evaluation. Based on the results in this paper, the following conclusions have been 
drawn.  

1. The optimal parameters of the Ugrinsky wind turbine were S = 0.35D, L = 1.0R for stable 
power coefficient at λ = 0.5–0.7; S = 0.35D, L = 1.3R for maximum power coefficient at 
λ = 0.6. 

2. Compared to the original Ugrinsky wind turbine model (S = 0.40D, L = 1.0R), the 
maximum power coefficient was improved by 1.5%. 

3. Compared to the original Ugrinsky wind turbine model (S = 0.40D, L = 1.0R), the 
average value of the power coefficient for neighbouring tip speed ratios was improved 
by 5.9%. 

4. The presented optimum Ugrinsky models offer a viable option for future installation of 
VAWTs. 
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Figure 8:    Pressure coefficient distributions around the Ugrinsky models for different 
Segment 2 radii. The black vectors are representing the torque generated on the 
blades. 
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     It should be noted that the blade length is not considered during this optimisation. Thus, 
in order to reduce the weight and the moment of inertia, the proposed wind turbine shape 
should be optimised in terms of blade length to further increase efficiency. 
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