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ABSTRACT 
This paper tackles the issues of elaborating and researching methods for generating and selecting 
information for classifying the states of energy cogeneration systems according to levels of 
competitiveness. Assessment of the level of competitiveness consists in analyzing the state of 
centralized and distributed energy cogeneration systems, both in terms of local and integrated indicators 
of their operations. Joint analysis of the said systems is a complex task that requires the use of adapted 
methods for its solution. Creating methods for classifying the states of energy cogeneration systems 
according to levels of their competitiveness is a multilayered task. Since these systems are a 
combination of engineering, economic, environmental and other subsystems, the number of factors 
affecting their operations is rather high. A change in the state of energy cogeneration systems can be 
accompanied by a change in a variety of performance indicators. The behavior of such systems is 
effectively studied by means of mathematical statistics methods. It is well-known that the issues of 
diagnosticating and modeling the expected level of competitiveness of power generating companies are 
poorly formalized multiparametric problems with insufficiently defined information and 
multidimensional relationships between indicators that typify competitiveness. Therefore, the 
procedure for classifying the states of energy cogeneration systems according to their competitiveness 
levels, with subsequent review of both the properties of individual classes and the differences between 
them, fit well into the discriminant analysis model. The use of discriminant analysis technique made it 
possible to build a classification system that allows to identify the state of multidimensional objects in 
energy cogeneration systems. 
Keywords: power generation industry, energy cogeneration systems, classification, discriminant 
analysis, competitiveness, uncertainty. 

1  INTRODUCTION 
The reliable operation of energy cogeneration systems, being the most important component 
of major power generation systems, is essential for successful economic development of the 
country as a whole. Not only technical, but also economic aspects of reliability predetermine 
the complexity of studying the above-mentioned objects and their interaction with other 
components of economy and social sphere in order to determine the best control actions to 
achieve an economic effect and to maintain a constant readiness of power systems to cope 
with operational threats arising in periods of economic and political crises, catastrophes, 
disasters, etc. The complex structure of energy cogeneration systems requires the 
development of adequate methods for determining their states. 
     The tasks to be solved in the study comprise the creation and review of methods for 
generating and selecting information for classifying the states of energy cogeneration systems 
according to the levels of competitiveness of power generating companies, as well as the 
analysis of their capabilities to ensure the reliable power supply. 
     Assessment of the level of competitiveness of energy cogeneration systems consists in 
analyzing the state of territorial energy systems, fuel supply systems, and centralized and 

Energy and Sustainability IX  25

 
 www.witpress.com, ISSN 1743-3541 (on-line) 
WIT Transactions on Ecology and the Environment, Vol 254, © 2021 WIT Press

doi:10.2495/ESUS210031



local heat supply systems, in terms of their integrated indicators of their operation. Joint 
analysis of the said systems is a complex task that requires the use of well-proven and adapted 
methods for its solution. Therefore, this research is not focused on the entire set of energy 
industry’s systems, but only on a fraction of it – cogeneration systems. A cogeneration system 
is based on the following: (1) centralized system, consisting mainly of heating-type 
cogeneration sources that form part of the territorial generating company; (2) distributed 
system, consisting of medium- and low-power cogeneration sources located near power load 
centers, including those serving individual groups and units of consumers (usually in remote 
areas of a region). If combined in a rational way, the centralized and distributed systems can 
complement each other and make it possible to create a sufficiently flexible energy 
cogeneration system for a territory, with it becoming a key link in the regional power 
generation system. Such a cogeneration system is able to reliably provide consumers with 
electric and thermal power and successfully compete with separately generated energy 
sources due to the implementation of cogeneration’s competitive advantages [1], [2]. 
     Thus, creating methods for classifying the states of energy cogeneration systems is a 
multilayered task. Since the energy cogeneration system (object to be classified) is a 
combination of engineering, economic and other subsystems, the number of factors affecting 
its operation is quite large. Their changes are often random. A change in the state of energy 
cogeneration systems can be accompanied by a change in a variety of performance indicators. 
Research experience has shown that the behavior of such systems is effectively studied by 
means of mathematical statistics methods. At the same time, it has to be borne in mind that 
applying the mathematical statistics methods only formally may produce results that in fact 
do not completely line up with reality. These results cannot be properly interpreted, and this 
will lead to confusion and reduce the confidence in the research method used [3], [4]. 

2  METHODOLOGICAL ASPECTS OF CLASSIFICATION OF STATES  
OF ENERGY COGENERATION SYSTEMS BASED ON  

DISCRIMINANT ANALYSIS 
In order to classify the states of energy cogeneration systems, we have considered and can 
recommend the discriminant analysis, as it enables us to build a classification system based 
on the data of a training sample. The large number of procedures and checks employed in the 
method allows making a priori conclusions on the resulting classification system’s quality. 
The essence of the method consists in maximizing differences between classes while 
minimizing intragroup differences based on the training sample’s data. Thus, the data and 
variables used to obtain discriminant functions are to be as representative of the classes being 
generated as possible [5], [6]. 
     The discriminant analysis method’s advantages for analyzing the state of energy 
cogeneration systems in different territories, compared to other methods, are as follows: 

 Analysis model is built on the basis of maximizing the differences between identified 
classes; 

 The model provides for subordination of observations made in classes to a certain 
probabilistic law (the normality requirement may not be met in case of using special 
procedures); 

 Along with factor analysis, it replaces the space of parameters (variables) with a factor 
space (which, in the case of the issue being analyzed, has much less dimensions). 

     The methodological approach that has been developed is as follows. Prior to elaborating 
a classification system, the initial data analysis is effected: subordination of variables to the 
normal probability law, equality of covariance matrices of classes, etc. 
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     In general, the task consists in constructing, based on the training sample data (with an 
estimate of the general totality parameters), the image models, i.e. decision rules that would 
serve as the basis for recognizing a new object 𝑎ሺ𝑥଴ሻ: 

 𝑋଴ ∈ 𝑚௞ ⇒ 𝑋଴ ∈ 𝑋௞ ⇒ 𝑎ሺ𝑋଴ሻ ∈ 𝐴ሺ𝑋௞ሻ, 𝑘 ൌ 𝑁, 𝑀, 𝐿. (1) 

     The decision rule has to enable minimizing the mathematical expectancy of losses 
associated with misclassification, that is: 

 𝐹ሺ𝑢ሻ ൌ 𝑐ଵ𝑞ଵ𝑃ଵሺ𝑢ሻ ൅ 𝑐ଶ𝑞ଶ𝑃ଶሺ𝑢ሻ ൅ 𝑐ଷ𝑞ଷ𝑃ଷሺ𝑢ሻ, (2) 

where 𝑃௞ሺ𝑢ሻ, ሺ𝑘 ൌ 1,2,3ሻ = functions for distribution of objects in classes (N, M, L); 𝑞௞ = a 
priori probabilities of the emergence of objects of three classes; 𝑐௞ = “costs” of errors in 
assigning objects to three classes. 
     It is possible to effect the classification of observations on the basis of measuring the 
distances between the object and the centroids of classes in the space of canonical 
discriminant functions [7]. The classical version of discriminant analysis, which determines 
the canonical directions in the attributes space, is based on the following criterion: 

 𝐷 ൌ
௜௡௧௘௥௖௟௔௦௦ ௩௔௥௜௔௡௖௘

௜௡௧௥௔௖௟௔௦௦ ௩௔௥௜௔௡௖௘
ൌ 𝑚𝑎𝑥. (3) 

3  GENERATION OF A CLASSIFICATION SYSTEM AND  
ASSESSMENT OF ITS QUALITY 

After carrying out the preliminary procedure for selecting the most informative indicators 
and statistically analyzing the data, we turn to the principal part of the analysis – obtaining 
discriminant functions and identifying new observations presented for identification [8], [9]. 
The new facilities correspond to the cogeneration systems of the Urals, typified by their year 
2020 indicators. The analysis is meant to determine which class the objects belong to, which 
level of crisis they experience, and how their state has changed in comparison with previous 
years. 
     The elaboration of a classification system involves obtaining the coefficients of canonical 
discriminant functions that determine the system of orthogonal directions that delineate the 
maximum differences between the classes, be it in a standardized or non-standardized form. 
Table 1 lists these coefficients. 
     In order to classify new observations when using functions with coefficients in a non-
standardized way, the values of variables are used in their original form. There will be some 
peculiarities in the values of discriminant functions obtained in this way. In particular, the 
variables have unequal weight, and their contribution to values of discriminant functions is 
calculated in absolute (actual) units. This leads to the fact that coefficient values in case of 
some variables will be rather large, while in case of others – rather small. Indeed, the values 
of coefficients (in absolute magnitude) in Table 1 for variables 10 and 12 are four orders of 
magnitude higher than the value of coefficient for variable 14 in both discriminant functions. 
However, this does not correspond to the actual contribution of variables to values of 
discriminant functions. 
     When using standardized coefficients, the contribution of each variable is measured in 
relative units, i.e. in the form of the variable’s contribution to the discriminant function’s 
value. The standardized variables have a zero mathematical expected value and an occasional 
root-mean-square deviation [10]. 
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Table 1:  Coefficients of canonical discriminant functions. 

Variable name 

Canonical discriminant functions 
Non-standardized Standardized 
Function number Function number 

1 2 1 2 
1. Territory’s operating capability to peak 

load ratio
–0.979 3.615 –0.278 1.497 

2. Installed capacity use factor –1.671 10.874 –0.221 1.441 
3. Share of cycling power sources in the 

installed capacity 
4.833 –2.482 0.393 –0.202 

4. Ratio net power flow to electricity 
generated in the territory 

–0.240 –0.329 –0.374 –0.512 

5. Power consumption per person 0.146 –0.651 0.271 –1.209 
6. Installed capacity use factor of captive 

power plants 
2.343 –9.162 0.565 –2.211 

7. Share of electricity generated by captive 
power plants in total power generation

–2.329 16.368 –0.256 1.797 

8. Normalized heat generation per one 
kilometer of main pipelines

0.020 0.007 0.653 0.220 

9. Share of fuel oil in the total reference 
fuel consumption 

–3.426 –7.344 –0.255 –0.546 

10. Share of natural gas in the total 
reference fuel consumption

1.913 1.671 0.401 0.350 

11. Share of other types of fuel in the total 
reference fuel consumption

–2.306 14.407 –0.090 0.564 

12. Specific losses in networks, per unit of 
length of transmission line normalized 
to 110 kV 

38.346 –9.126 1.105 –0.263 

13. Ratio of length of power lines 
normalized to 110 kV to the total power 
consumption in the territory

0.570 –2.041 0.370 –1.323 

14. Normalized fuel consumption for power 
generation

–0.002 0.009 –0.131 0.569 

15. Normalized fuel consumption for heat 
generation

0.041 0.012 0.633 0.181 

16. Ratio of power grid losses to the total of 
electricity consumed without 
accounting for the losses 

–28.745 38.887 –0.745 1.008 

17. Number of process or functional 
failures per kW of installed capacity

0.002 0.006 0.162 0.557 

18. Number of process or functional 
failures per thousand kilometers of 
power transmission lines normalized to 
110 kV 

–0.058 –0.148 –0.403 –1.026 

Constant –10.614 –5.856 0 0 
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     Comparing the coefficients of discriminant functions specified in Table 1, note the 
concordance of signs for the corresponding non-standardized and standardized coefficients, 
which should be the case. Judging by the values of standardized coefficients, we note that the 
variable 12 makes the largest contribution to the first function’s value. Variable 11 makes the 
smallest contribution, moreover, this contribution is negative. The largest negative 
contribution is made by variable 16, and the largest positive contribution to the second 
function’s value is made by variable 7, while the largest negative contribution is made by 6, 
which is greater in absolute value. Variable 8 makes the smallest contribution. 
     The constants in the discriminant functions are calculated in such a way that the principal 
centroid has zero coordinates in the discriminant functions plane. This condition is satisfied 
automatically for any discriminant functions in a standardized form, so the constants are 
equal to zero. 
     The centroids of classes are calculated by means of replacing the variables with their 
average values according to groups. This results in three points corresponding to the centers 
of classes, or the so-called centers of “gravity” of the classes (Table 2). 

Table 2:  Values of functions at centroid points of classes. 

Competitiveness level 
Function

1 2
N 3.793 0.835
M 0.456 –1.306
L –1.299 0.455

 
     The identification of objects is effected as follows. The object to be identified has its 
distances to the centers of all classes calculated. The object is assigned to a class to which 
the distance is the shortest. Thus, a classification system was obtained based on discriminant 
analysis of a training sample data on 90 observations corresponding to 18 variables. 
     In addition to identifying the objects, their position in the plane of discriminant functions 
offers additional information for analysis: proximity of object to class boundaries, dynamics 
of object situation change and trajectory of their “movement”, since there is a constant set of 
objects (eight energy cogeneration systems) that is tracked over time. 
     Before proceeding to the analysis of results, let us consider the assessment of the resulting 
system’s quality. Tables 3 and 4 list the criteria’s computed values. 

Table 3:  Values of utility criteria for canonical discriminant functions. 

Function Eigenvalue λ Relative percentage, % Canonical correlation 

1 3.347 82 0.887 

2 0.736 18 0.651 

Table 4:  Assessment of residual discriminant capability. 

Functions 
λ-Wilks 
statistics 

χଶ test of 
significance

Number of degrees 
of freedom 

Significance 

1 0.133 158.639 36 0.0001 

1 and 2 0.576 43.28 17 0.0001 
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     The eigenvalues of discriminant functions and their relative percentage in description of 
the total variance show how the discriminant functions relate to each other in terms of shared 
properties. The relative percentage for the first function is noticeably higher than for the 
second. However, there is not much difference in the canonical correlation values. 
     λ-Wilks statistics and significance test also demonstrate the presence of significant 
residual discriminant capability. A significance of 0.0001 suggests that if there are no 
differences between classes in the unused part of the data variation, then such a large statistic 
value is found in one out of 10,000 samples. Therefore, this classification system can be used 
for identification of objects and their subsequent analysis. 

4  ANALYSIS OF RESULTS OF CLASSIFICATION OF THE URALS’  
ENERGY COGENERATION SYSTEMS 

The input of the classification system receives descriptions of classified objects according to 
values of integral indicators as of the end of 2020 – Bashkir, Kurgan, Orenburg, Perm, 
Sverdlovsk, Udmurt, Chelyabinsk and Tyumen cogeneration systems of the Urals region. 
Table 5 lists the results of classification of these objects for the year 2020. 

Table 5:  Object identification results (2020). 

Energy 
cogeneration 
system 

Greatest of class membership 
probabilities 

Greatest of 
probabilities of 

belonging to other 
classes

Discriminant 
function value 
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1 2 

Bashkir 2 0.11285 0.83767 4.36346 3 0.16233 7.64546 –1.37099–2.31911 M 

Kurgan 3 0.07346 0.79908 5.22211 2 0.20092 7.98328 –2.35647–1.58081 L 

Orenburg 3 0.43645 0.57953 1.65818 2 0.42046 2.29991 –0.97462–0.80117 L 

Perm 3 0.89291 0.95768 0.22653 2 0.04231 6.46571 –0.97681 0.79532 L 

Sverdlovsk 2 0.00001 0.98150 23.61204 3 0.01850 31.55461 –2.71000–4.99225 M 

Udmurt 3 0.09616 0.77603 4.68350 2 0.22397 7.16883 –2.21359–1.51639 L 

Chelyabinsk 3 0.44567 0.99799 1.61636 2 0.00201 14.03158 –2.10670 1.42683 L 

Tyumen 2 0.00001 0.99999 23.31339 3 0.00001 46.59361 0.52200 –6.13357 M 

 
     As a result of classification, the calculated level of competitiveness of cogeneration 
systems receives the following designation: N = Normal, M = Medium, L = Low. 
     The analysis of results showed that the Bashkir, Sverdlovsk and Tyumen cogeneration 
systems are classified as corresponding to M class, and the rest of the classified objects are 
classified as corresponding to L class. If we consider the values of a posterior probabilities 
for three objects from the class M – the Bashkir, Sverdlovsk and Tyumen energy 
cogeneration systems – then they are 0.83767, 0.981499 and 0.999991, i.e. close to one. The 
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values of largest a posterior probabilities of these observations belonging to other classes 
(class L) are, respectively, 0.162329, 0.0118501, and 8.81×10–6. As for the rest of energy 
cogeneration systems, their class is also unambiguous (value of the largest posterior 
probability is much higher than the other posterior probabilities; values of posterior 
probabilities of objects of training sample also differ greatly in case of the nearest two 
classes). Only in the case of Orenburg energy cogeneration system, the posterior probability 
of belonging to the M and L classes amounts to 0.420462 and 0.579534, respectively. 
Obviously, in terms of the plane of discriminant functions this object is at approximately the 
same distance from classes M and L, i.e. it is close to the class boundary. The Bashkir, Kurgan 
and Udmurt cogeneration systems are also located near the M and L classes’ boundary. The 
Sverdlovsk, Chelyabinsk and Tyumen cogeneration systems are located at a greater distance 
from the M and L classes’ boundary. 
     Based on the calculations performed, some general remarks can be made on the 
applicability of discriminant analysis for the issue being considered. First, there is a fairly 
good agreement of results with initial data (training sample) on class affiliation. Second, the 
objects’ position on the discriminant functions plane confirmed that, for example, the Perm 
cogeneration system is in a worse position in terms of competitiveness than the Sverdlovsk 
one, i.e. the position of objects in the model reflects actual objective properties. 

5  CONCLUSION 
Based on the 2010–2020 data on energy cogeneration systems in the Urals, a classification 
system was obtained, making it possible to determine the state of electric power systems and 
diagnosticate the situation for of each facility by examining the variables included in the 
calculation. Information on the situational dynamics of various objects has also been 
obtained, which may be useful for short-term forecasting of states of reviewed energy 
cogeneration systems. 
     The advantage of the proposed methodological approach to classification and 
identification of states of energy cogeneration systems consists in enhancement of decision-
making technology pertaining to minimization of economic risks in a situation of uncertainty, 
aimed at increasing a power generating company’s competitiveness. 
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