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Abstract 

Battery Energy Storage Systems (BESS) are essential for performing a suitable 
energy management from renewable sources. They are therefore a necessary 
element of the new trends of smart grids and micro-grids. This paper proposes a 
storage system through independent battery strings to increment cycles of use 
during their lifespan and take advantage of the maximum extracted energy, which 
has a direct impact on reducing investment and operating costs. Hence, Battery 
Management Systems (BMS) are indispensable to improve the BESS’s 
performance since they allow working with independent battery strings to connect 
and disconnect independently, depending on the load requirements. This paper 
seeks to validate a lead-acid battery model from measurements in terms of State 
of Charge (SOC), State of Health (SOH) and terminal voltage. Therefore, it is 
important to check different models that match with these applications’ 
requirements. Since the final selection of the model depends on the parameters 
that shape it, it is necessary to study different methods for determination of SOC 
and SOH of the batteries to classify them according to their complexity and 
uncertainty for the set up advantages and disadvantages of each one. A MATLAB-
Simulink® simulation of a model is made as an example, where the measurement 
matches the model’s elements, allowing us to obtain basic values such as SOC, 
SOH, depth of discharge (DOD) and terminal voltage simulated under a previously 
established uncertainty value. This paper leaves a path opened to allow for a future 
study about the implementation of a BMS to control properly each one of the 
battery strings that compose a BESS. 
Keywords: battery energy storage system, lead-acid battery, state of charge, state 
of health, depth of discharge, battery model, battery management system. 
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1 Introduction 

BESS have limitations regarding optimal cycling operation and maximum parallel 
strings (Standard IEEE 1491 of 2012 [1]). Further, it recommends using the same 
number of parallel and series strings (Standard IEEE 485 of 2010 [2]). However, 
manufacturer recommendations limit the parallel strings to four, as you see in 
figure 1(a), due the possibility of a voltage imbalance between them and the cell 
with lower voltage predominates. 

BESS in independent configuration use control devices to connect and 
disconnect strings depending of load conditions and cell states (Rahimi-Eichi et 
al. [3]). In figure 1(b) this configuration is shown; so there are no limits in parallel 
strings comparing with conventional configuration. Thus, the total cycles with 
independent strings will be the sum of available cycles of each string, unlike 
conventional configuration where total cycles are the available cycles of one string 
because the BESS is under the same charge and discharge rate. Therefore, our 
raised configuration brings advantages in terms of maximum useful energy, 
backup, redundancy and maintenance (Standard IEEE 1187 of 2002 [4]). 
     To validate those advantages of independent configuration, measurements of 
electric features on a 2.3 Ah lead-acid battery were carried out in terms of SOC 
and SOH. Those measurements were applied in a MATLAB-SIMULINK® to 
determinate the remaining cycles and useful life. This papers is organized as 
follows: Section 2, Review of battery models; Section 3, SOC and SOH estimation 
methods; Section 4, Chosen model and estimation methods; Section 5, Battery 
modelling; Section 6, Results; Section 7, Conclusions. 
 

(a) (b) 

Figure 1: BESS on (a) conventional configuration and (b) independent 
configuration. 

2 Battery models 

There are a lot of battery models developed by researchers with different 
complexities in order to meet battery behavior in specific purposes, for example 
battery design, performance estimation and circuit simulation (Chen and Rincon-
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Mora [5]). Among battery models (Kai and Qifang [6]), three main groups stand 
out (as shown in figure 2): Electrochemical, Mathematical and Electric models. 
 

 

Figure 2: Main groups of battery models. 

     Dees et al. [7] used electrochemical models with design purposes to fit these 
parameters with information a macroscopic and microscopic level, but they suffer 
from long simulation time due to complex algorithms and parameters difficult to 
obtain according to Santhanagopalan et al. [8] and Rao et al. [9]. Mathematical 
models use empirical equations or mathematical methods such as stochastic 
approaches to predict parameters like efficiency and capacity (Salameh et al. [10] 
and Gomadam et al. [11]). However, they work only in specific applications and 
Rong and Pedram [12] showed an error percentage between 5 and 20%. Finally, 
electrical models are the most accurate models because they have an error between 
1 and 5%, also they work in co-simulation with other models since they use an 
equivalent electrical circuit thought resistors, capacitors and voltage sources (Rao 
et al. [9]); therefore they are very useful in different applications. According to 
Chen and Rincon-Mora [5], it is possible to group electrical models in three groups 
(as seen in figure 3), Thevenin-based, impedance-based and runtime-based. 
     -Thevenin-based: It uses series resistors with a RC parallel network that 
predicts transient response in a particular SOC. Consequently, it is not possible to 
determinate voltage variations in steady state because the parameters are assumed 
constant (Durr et al. [13]). 
     -Impedance-based: It uses the spectroscopy impedance to obtain an equivalent 
AC impedance model on frequency domain (modeling electrochemical behavior). 
Also uses a complex equivalent network to adjust impedance spectrum, so it works 
for a particular SOC and temperature. 
     -Runtime-based: It uses a complex circuit to simulate battery operation and 
obtain the DC voltage response for a constant current, but it is not accurate with 
variable charges. It is able to model transients, self-discharge resistance and 
voltage drops due internal losses. 
     However, within these three battery models there are a lot of models developed 
for specific applications. Durr et al. [13] showed the simplest model. It represents 
an ideal battery with an electric source ܧ଴ and constant internal resistor ܴܵܧ 
(battery fully charge) as shown in figure 4, being useful only in applications where 
the SOC is not an important parameter. Similarly, Chan and Sutanto [14] showed 
a modification of that model assuming a variable internal resistor according to 
SOC behavior, eqn. (1), where ܴ଴ is the resistance when the battery is fully 
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(a) (b) 

 
(c) 

Figure 3: Battery models based on (a) Thevenin, (b) Impedance and 
(c) Runtime [6]. 

charged, ܵ is the SOC that changes between 0 (fully discharged) and 1 (fully 
charged), and K is a coefficient in function of rate of discharge determined by 
manufacturer data (Peukert function). ܵ is defined in eqn. (2), where ܥଵ଴ is the 
capacity (Ah) in a 10 hour discharge rate (Cun et al. [15]). 
 

ܴܵܧ ൌ
݋ܴ
ܵ௞

 
(1)

ܵ ൌ 1 െ
݄ܣ
ଵ଴ܥ

 (2)

 
     Improvements in some models are focused in the representation of the battery 
dynamic behavior (Chan et al. [14]), takes into account the nonlinearity of the 
open circuit voltage (Voc) and the internal resistance, also showed a overcurrent 
model that requires a lot of parameters to meet a good representation of voltage 
variations due SOC. Kai and Qifang [6] showed a fourth-order dynamic model; 
this one is accurate because it represents electrolyte behavior, ohmic effect and the 
battery age. Even so, it suffers from two drawbacks, a long time simulation and 
need empiric information due to its fourth grade. Chen and Rincon-Mora [5] 
developed a model that combines features of the three main groups, it is able to 
predict runtime operation, steady state and transient response. Durr et al. [13] 
implemented a nonlinear dynamic model as a variation of Thevenin based where, 
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separating the charge and discharge process, it estimated the relationship between 
Voc and SOC. 
 

 

Figure 4: The simplest battery model [15]. 

3 SOC and SOH estimation methods 

Rahimi-Eichi and Chow [16] described the SOC as the percentage that defines the 
remaining capacity of the battery, that is to say, the relationship between rated 
capacity and the net amount of charge of a discharged battery. Mathematically, 
Codecà et al. [17] defines it as: 

ሻݐሺܥܱܵ ൌ
௡௢௠݄ܣ െ ׬ ݐሻ݀ݐሺܫ

௧
଴

௡௢௠݄ܣ
 

(3)

 

ሺ%ሻܪܱܵ ൌ
ܳ஺஼்
ܳோ

∗ 100 (4)

 
where ܳோ is the rated capacity and ܳ஺஼் is the current battery capacity that is 
degraded by several macroscopic and microscopic phenomena present during 
cycling. 
     Currently, many methods to estimate the SOC and SOH have been presented: 
Codeca et al. [21] showed Ah counting, discharge test used by Coleman et al. [22], 
Roscher and Sauer [23] used the Voc-SOC relationship, impedance spectroscopy 
is explained by Lindahl et al. [24], a review of DC internal resistance is done by 
Huet [25], Xiong et al. [19] developed a kalman filter, Singh et al. [26] used a 
fuzzy logic, among others (Piller et al. [27]). Each of them has advantages and 
disadvantages on its implementation. Table 1 shows a brief summary of estimation 
methods commonly used. 
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where ܫሺݐሻ is the extracted current from the battery (positive in discharge) and 
 .is the rated capacity ݉݋݄݊ܣ
     While SOC is a well-known parameter of the remaining capacity, SOH that is 
supposed as state indicator, it has not been defined yet, Rahimi-Eichi et al. [3]. 
Some authors (Kim [18]), define it like the ability to store charge, supply high 
currents and maintain charge for long periods; another authors have said that SOH 
is an indicator of lifespan and a measure of relative condition compared with a 
new battery (Xiong et al. [19]). However, many of them agree with the following 
equation to define this parameter [3, 20]: 



Table 1:  Advantages and disadvantages of estimation methods. 

METHOD 
FIELD OF 

APPLICATION

SUITABLE 
BATTERY 

MODEL 
ADVANTAGES DISADVANTAGES 

Ah Counting 
All battery 

systems, most 
applications 

Thevenin 
Model 

Online, accurate if 
recalibration of 
measurement 
equipment is 

available 

Initial value of SOC, 
model for the losses, 

intensive cost in 
calibration, sensitive 
to parasite reactions 

Discharge 
Test 

All battery 
systems, most 
applications 

Impedance 
Model 

Easy, accurate, 
strong SOH 

indicator 

Offline, time 
intensive, loss of 

energy and lifespan 
due frequent deep 

discharges 

OCV-SOC 
Relationship 

Lead, Lithium, 
Zn/Br,  

VA group 

Thevenin 
Model 

Online, cheap, 
SOH estimation 
trough Q-VOC 

curve 

Problems with acid 
stratification, needs 

long rest time, 
sensitive to parasite 

reactions, low 
dynamic 

Physical 
Properties of 
Electrolyte 

Only liquid 
electrolyte 
batteries 

Electro-
chemical 
Model 

Online, SOH 
indicator 

Problems with acid 
stratification, low 

dynamic, sensitive to 
temperature and 

impurities 

Impedance 
Spectroscopy 

All battery 
systems 

Impedance 
Model 

Online, SOH 
indicator and 

battery lifespan 

Intensive cost and 
time, specific 

equipment, sensitive 
to temperature 

D. C. Internal 
Resistance 

Lead, Ni-Cd, 
Lithium, Ni-Mh 

Runtime 
Model 

SOH estimation, 
cheap, easy, online

Good accuracy in 
short time intervals, 

sensitive to 
temperature 

Neural 
Networks 

All battery 
systems, most 
applications 

Runtime 
Model 

Online, accurate 

Needs training data, 
limitation on inputs 
variables, intensive 

cost 

Kalman Filters 
All battery 

systems, most 
applications 

Thevenin 
Model 

Online, dynamic, 
accurate, SOH 

estimation 

Need large 
computing capacity 
and suitable battery 
model, difficult to 

implement 

Heuristic 
Interpretation 

Applications 
with frequently 

fully charge, few 
changes in SOC 
and low currents

Impedance 
Model 

Online, cheap, 
easy 

Needs reference data 
for fitting 

parameters 

Fuzzy Logic 
All battery 

systems 
Impedance 

Model 

Online, doesn’t 
need mathematical 

models and 
preliminary 

history, robust 

Large amount of 
memory and need 
large computing 

capacity 
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4 Chosen model and estimation methods 

Based on Section 2, we chose a modification of the battery model presented in 
figure 4, taking into account that: our model needs the steady state response, model 
parameters are easier to obtain with estimation methods related in section 3, it 
requires a low computing power due its low complexity by having a dependent 
source and a variable resistor that represent the dynamic behavior as consequence 
of SOC and SOH respectively. 
     Consistent with the chosen model, it is used Ah counting method to estimate 
the SOC. The SOH is estimate with the DC internal resistance method. Those 
methods are the most common methods, cheap and easy to implement, also they 
require a low computing power and meet the expected uncertainty. Another 
important factor is that there is no suitable equipment in our laboratory to 
implement methods with lower uncertainty (i.e. spectroscope). 

5 Battery modelling 

5.1 Measurements 

To ensure that temperature was constant, all the tests were carried out at 25°C in 
a temperature controlled chamber, measuring the current and voltage of Mtek 12V 
2.3Ah VRLA Lead-Acid Battery (MT1223) through a current sensor 
ACS714ELC-20A and operational amplifiers to measure voltage like signal 
conditioning. Those signals were taken by the data acquisition system performed 
in LABVIEW® to store and calculate significant parameters (SOC, DOD, Voc, 
internal resistance, total cycles and operating time) during the discharge and 
charge process. 
     The battery’s initial internal resistance at 25°C with the battery fully charged 
was 0.060 ohms. That was the starting point that allowed the analysis of battery 
state during the cycles. Table 2 gives a summary of charge and discharge rates 
used during the test. You can notice that are three rates of discharge, recommended 
by the manufacturer. 

Table 2:  Discharge and charge rate information. 

Discharge Charge 
Discharge 

Mode 
Constant Load Maximum 

Charge 
Current (A) 

0.69 
DOD 40% 

Rate 1C 0.5C 0.1C 
Float 

Voltage (V) 
13.6 to 13.8 

Time (min) 24 48 240 
Cycling 

Voltage (V) 
14.5 to 14.9 
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5.2 Modeling 

In MATLAB-Simulink® Sim Power System library there is a battery model with 
a dependent voltage source (in function of SOC) and a series resistance. This 
model simulates Lithium-Ion, Nickel-Cadmium, Nickel-Metal and Lead-Acid 
batteries through terminal voltage variations by having hysteresis effect between 
charge and discharge voltage. However, this model has a constant internal 
resistance unchanged regarding to age and discharge current. Also, temperature 
does not affect the battery behavior, and there is not memory effect and self-
discharge [28]. 
     Based on this model, this paper proposes a variable internal resistor that 
represents SOC and SOH behavior unlike constant resistor and its limitations. This 
variable resistor is modelled through a dependent voltage source simulating the 
voltage drop in this resistor and thus obtain more real terminal voltages in function 
of time and rate of discharge. This variable resistor is modelled in function of Voc 
limited by manufacturer values, where the minimum resistor value is when the 
battery is fully charged and the maximum value is when the SOC is 0. The results 
of this model will be analyzed in the next section. 

6 Results 

 

 

Figure 5: Internal resistance measured and simulated. 

     In figure 7 the terminal voltage on a 0.5C rate is observed, where the value 
measured is similar to the value simulated until 40% DOD. As in the previous 
measurements, the maximum error is 2% near to exponential zone of the voltage 
signal. Figure 8 summarizes the terminal voltage signals of the three rates, where 
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Figure 5 shows the behavior of internal resistance at a 0.5C rate compared with its 
simulation. This resistance measured is affected by measure devices resolution. 
Durr et al. [13] took an internal resistance measurement and this one remains 
constant almost all rates of discharge and it grows in an exponential way at the end 
of the cycle. The behavior of the internal resistor at 1C, 0.5C and 0.1C are shown 
in figure 6, where the internal resistor grows proportionally to the rate, which 
means, SOH is inversely proportional to the internal resistance function. 



 
Figure 6: Comparison of internal resistance among differing rates of discharge. 
 

 
Figure 7: Discharge voltage measured and simulated. 

 

 

Figure 8: Simulated discharge voltage discharge among differing rates of 
discharge. 
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Figure 9: SOC measured and simulated. 

7 Conclusion 

A change at the MATLAB-Simulink® model was done in the SimPowerSystems 
library, where it introduces a variable behavior of the internal resistance taking 
into account SOC and SOH, reflecting measured parameters without change the 
model behavior from a 12V 2.3Ah lead-acid battery with 40% DOD. Ah counting 
method was suitable to estimating SOC, whereas internal resistance measurement 
to estimating SOH presented the worst error among all measurements, so this 
method is still difficult to obtain. Therefore, the uncertainty degree depends on 
largely of the measurement devices, since to obtain results more accurate is need 
using devices with a better resolution and exactness, to make a reliable 
measurement. 
     A review of the battery models and estimation methods of SOC and SOH was 
done and it is presented a table related with these parameters according to their 
advantages and disadvantages, so each estimation method matches with a model 
where it could be implemented. 
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