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Abstract  

An experimental study of turbulence effects on combustion in an axisymetric 
turbulent jet in a piloted Bunsen burner is presented. The dynamic field of 
turbulent premixed methane-air flames in lean and stoichiometric conditions  
(φ = 0.6-1.0) was obtained using Particle Image Velocimetry Technique (PIV). 
The results show that on the burner axis, the mean velocities increase along the 
flame front. The turbulent kinetic energy is constant in the first third of the inner 
structure of the flame in unburned side, and increases later in the lean flame front. 
For the isothermal flow, near the burner wall, the turbulent kinetic energy is 
essentially produced by the mean velocity gradient. For the reactive flow case, the 
results show an important dissipation of turbulent kinetic energy in the central 
region of the jet due to the dilatation of the hot gases and at the same time, an 
important production of turbulent kinetic energy in the region surrounding the 
main jet. 
Keywords: experimental, premixed combustion, turbulence grid, dynamic field. 

1 Introduction 

The reactive flows found in industry as in furnaces or gas turbine combustion 
chambers are mostly turbulent flows.  Much effort in this field is motivated by the 
need to understand the interaction between turbulence and combustion phenomena 
that occur in these applications [1]. Damkohler conducted the first study on the 
influence of turbulence on the flame propagation in 1947 [2]. Over the past two 
decades, considerable progress has been made in the experimental studies thanks 
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to the development of non-intrusive optical diagnostic techniques based on 
powerful lasers and rapid acquisition and treatment systems [3]. The experimental 
research in basic configurations or near industrial configurations (transparent 
engine, ...) on the turbulent premixed combustion allow to determine with high 
precision, the various parameters involved: turbulence parameters obtained by 
Laser Doppler Anemometry, Particle Image Velocimetry and chemical parameters 
or related to the combustion obtained by Laser Induced Fluorescence, Laser 
Tomography [4–7]. All these experimental works are essential for a better 
description of the physical processes involved.  One of the major challenges posed 
by turbulent combustion is the comprehension of the interaction between  
the turbulence and chemical processes. In theoretical works, Bray et al. [7],  
Bray et al. [8], and Libby and Bray [9] suggested that thermal dilatation and 
associated density variations might overcome viscous dissipation and lead to a net 
flame production of turbulent kinetic energy. However, Poinsot and Veynante [10] 
showed that the Direct Numerical Simulation did not observe this net production. 
Plessing et al. [11] indicated that in the flame zone, the turbulence level is slightly 
reduced by combustion but increases downstream to about the same level as at the 
burner exit. Deschamps [12] and Gagnepain [13] worked on the turbulent 
premixed flames on a Bunsen burner. They used grids inside the burner to generate 
and control the level of turbulence at its exit. Deschamps [12] compared the 
dynamic field of the cold jet with the reactive one. He observed an increase in the 
axial velocity on the axis of the burner due to the acceleration of the fluid particles 
at the flame front.  Turbulence intensity was found to be significantly higher than 
that existing in the non-reactive jet. Gagnepain [13] reported similar observations. 
However, this author has found that in the case of lean premixed flames, the axial 
component of the velocity fluctuation decreases at the flame front. Recently, 
Chekired et al. [14] were working on the simulation of flame F3 (Aachen flames). 
The combustion was modelled using a two-step reduced scheme of Peters and 
Williams. Results on the reactive and isothermal flow fields showed a good 
agreement between the numerical predictions and the results from the experiment.  
     Our study aims at well understanding the behaviour of lean flames, in order to 
identify what are the respective influences of turbulence on the structure of the 
flame and vice versa. How is the structure of the flame? What are the dominant 
parameters in these interaction mechanisms?  

2 Experimental set-up 

The development of optical diagnostics using lasers greatly facilitates the study of 
these variables. In order to understand the interfering phenomena, the chosen 
measuring method must be non-intrusive so as not to disturb the flame propagation 
and allow 2D measures. Therefore, in this study, and to measure combustion, we 
have chosen a measurement technique adapted to our experimental configuration, 
the Picture Image Velocimetry (PIV) [15–19]. This optical diagnostic 
measurement technique, offers the advantage of providing instantaneous and 
average velocity in 2D mapping. This will be used to understand how locally 
velocity affects the flame propagation. PIV has been applied to determine the 
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aerodynamic characteristics of the flow in reactive and non-reactive case. We will 
present the experimental set-up: description of used burner, other set-up 
components, the studied flow and flame characteristics (lean, turbulent premixed, 
etc.), also, we will discuss in detail the techniques of chosen optical diagnostics to 
specify the areas of application, the identified properties and the adaptation of these 
techniques.   
 

2.1 Bunsen burner 

The experiments were carried out on a axisymmetric turbulent Bunsen burner  
[3, 4] with a stochiometric pilot flame (φ = 1.0) and a methane-air main jet  
(φ = 0.6 ÷ 1.0). The mean velocity of the central jet has a Reynolds number (based 
on the burner diameter) of 10,000.  The grids must introduce the turbulence created 
in the flame where it is necessary to remove the turbulence of the fresh gas 
mixture.  The Coflow is used to surround the reactive flow with an inert flow of 
the same speed to avoid the shear between the burnt gases and air [20]. 
Experimental data are obtained from a turbulent conical premixed flame, 
stabilized by a pilot flame on a burner Bunsen (figure 1): Burner nozzle and pilot 
flame have respectively a diameter of 30 and 36 mm. The air coflow can wrap the 
flame to avoid any lateral movements. The zirconium oxide particles, as seeding 
are most relevant to our study. 

Table 1:  Features geometric grids. 

Grid M (mm) d (mm)  d/M     σ (%)  CD (%)     
P 2.40        2 0.83     0.38     37.5         
M 3.52        3 0.85     0.34     26.5         
G 4.54        4 0.88     0.30     18.4 

 

2.2 Particle Image Velocimetry 

The principle of PIV [15, 16] is to replace the direct measurement of the flow 
velocity by the velocity of transported small particles (Zirconium oxide). To do 
so, the studied flow is seeded by enough fine particles to be able to locally identify 
their velocity to that of the flow. A Nd: YAG laser at 532 nm, illuminates the flow 
at to two successive moments. A camera collects two images of the enlightened 
particles field [21, 22]. Thus, the particles on the pictures were displaced between 
the two moments of registration, the local velocity of the particles can be 
numerically determined. For this, a cross correlation algorithm is successively 
applied on several parts of the image cut into mesh calculation. The cross 
correlation function presents a maximum which position in relation to the centre 
of the mesh calculation gives direction and value of displacement is most likely. 
Knowing the time between the two images and optical zoom system acquisition, 
the particles velocity in all areas of analysis can be calculated. This gives the 
velocity field throughout the study area.  
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2.3 Lines and benchmark 

2.3.1 Burner (mm) 
The vertical axis is the y-axis; the horizontal axis in the study plan will be the 
r-axis (figure 1). The same is applied to velocity: the components of axial and 
radial velocity will be noted v and u respectively. The third component (w) is 
supposed to be equal to v, so v = w and v’ = w’  

Figure 1: Area study. 

Results (U, V) and its fluctuations (u’, v’)  3  

Figures 2, 3, 4 and 5 illustrate the radial variation of the components of axial and 
radial velocity, and its fluctuations for the equivalence ratio (φ = 0.8) at different 
positions (axial position) (16 to 76 mm). The profiles show that the mean values 
of velocity and its fluctuations are proportional to the distance (y).  

Figure 2: Radial component of 
the velocity V for 
φ = 0.8 at different 
positions (station II). 

Figure 3: Axial component of 
the velocity U for 
φ = 0.8 at different 
positions (station II). 
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Figure 4: Radial component of the 
of the velocity fluctuation 
u’ for φ = 0.8 at different   
positions (station II).    

Figure 5:  Axial  component  of the 
of  the velocity fluctuation 
v’  for  φ = 0.8 at different   
positions  (station  II).      

     The profiles can be divided into two zones: a zone of preheating (r < 13 mm 
for the station I, r < 9 mm for the station II, r < 2 mm for the station III), and a 
reaction zone (r > 13 mm for Station I, r > 9 mm for the station II, r > 2 for the 
station III). The flame front lies at  r  15 at 18 mm for  y < 35 mm, r  12 at  
14 mm for 35 < y < 60 and r  6–8 mm for y > 60 mm. 
     Figures 6, 7, 8, 9 and 10 illustrate the radial profiles of axial and radial velocity 
components and its fluctuations, for the three turbulence grids P, M, and G, 
equivalence ratio equal to a 0.8 and y = 33.93 mm. The velocity profiles show that 
they are similar; the curves of the radial component u are almost coherent. The 
turbulence does not influence the radial component u. 
     For other graphs (v, u’, v’) it is clear that the profiles of the grid P and M are 
almost the same, this means that the grids P and M have similar turbulence 
characteristics. Velocity obtained using P and M grids is larger than the velocity 
of G grid. The grid, which gives the greatest velocity, is the grid, which has the 
smallest (d/M).  
     The flame front moves according to the grid turbulence, it locates at r  18 mm 
for the P and M grids and at r  16 mm for G grid. 
 

 

Figure 6: Axial velocity U for φ = 
0.8 and different grids 
turbulence y = 33 mm 
(station I). 

Figure 7:  Radial velocity V for  
φ = 0.8 and different grids 
turbulence y = 33 mm 
(station I). 
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Figure 8: Radial component of 
velocity fluctuation v’  
(φ = 0 .8) for different 
turbulence grids y = 33 
mm (station I). 

Figure 9: Axial component of 
velocity fluctuation u’  
(φ = 0 .8) for different 
turbulence grids, y = 33 
mm. 

3.1 Isotropy (u’/v’)  

The obtained profiles show that they are similar to each turbulence grid. The 
average values of the isotropy are proportional to the distance (y); isotropy 
increases with the height of the flame (figure 10).  
     The profiles show that they are similar; grid G is the one that has the most 
important isotropy. The M grid has a weaker isotropy than the G grid. The P grid 
has the lowest isotropy (figure 11). The grid, which has the most important 
isotropy, is the grid with the largest ratio (d/m). 
 

 

Figure 10: Isotropy u’/v’ for φ = 
0.6 and for P grid and  
y = 34–58 mm  

Figure 11: Isotropy u’/v’ for P, M and 
G grids, φ = 0.8 and y = 34 
mm.  

3.2 Turbulence intensity (u’/U) and kinetic energy 

The examination of these profiles shows that they are similar to each turbulence 
grid. The average values of the turbulence intensity are proportional to the distance 
(y). The profiles can be divided into two areas: Preheat zone (r < 13 mm for the 
station I, r < 9 mm for the station II, r < 2 mm for the station III). Reaction zone   
(r > 13 mm for the station I, r > 9 mm for the station II, r > 2 mm for the station 
III (figure 12).  
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Figure 12: Turbulence intensity u’/U 
for the three grids P, M 
and G φ = 0.8 and  
y = 33.93 mm (station II). 

Figure 13: Kinetic energy for the P,  
M and G grids,  φ = 0.8 and 
y= 33.93 mm (station II). 

     The obtained profiles show that they are similar; P grid has the largest kinetic 
turbulent energy. M grid has a bit weaker kinetic energy turbulent than that of the 
P grid (figure 13). The G grid has the lowest kinetic turbulent energy. The grid 
that has the largest kinetic turbulent energy has the smallest (d/m). 

4 Conclusion  

This work reports a study of the dynamic field in a turbulent premixed lean flame, 
and shows the turbulence-flame interaction. A range of equivalence ratios and 
turbulence intensities has demonstrated these interactions. The mean velocities 
and its fluctuations are proportional to the distance (y). The turbulence does not 
influence the radial component u. The grids that give the greatest velocity is the 
grid that has the smallest (d/M). M grid has a bit weaker turbulent kinetic energy 
than that of the P grid. The G grid has the lowest turbulent kinetic energy. The grid 
that has the largest turbulent kinetic energy has the smallest (d/m). The PIV 
technique that uses zirconium oxide as a marker seems to be more suitable for our 
case. 

Nomenclature  

R: radius of the burner (m)  
Y: axial direction (m)  
X: radial direction (m)  
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U: radial velocity (m/s) 
V: axial speed (m/s)  
u’: fluctuation radial (m/s)  
v’: axial fluctuation (m/s) 
u’/U: the intensity of turbulence 
u’/v’: isotropy 
K: the turbulent kinetic energy (m2/s2) 
r: radial direction (m) 
Y: the axial direction (m) 
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