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Abstract 

Biofuel production such as ethanol from lignocellulosic biomass consists of three 
fundamental processes: pretreatment, enzymatic hydrolysis, and fermentation. 
Enzymatic hydrolysis uses two types of enzymes simultaneously: endoglucanase 
I (EG1) and cellobiohydrolase I (CBH1), to break the cellulose chains into sugar in 
the form of cellobiose or glucose. We studied a currently proposed kinetic model 
for enzymatic hydrolysis of cellulose that uses the population balance equation. 
The model describes the changes in the cellulose chain length distribution. The 
complexity of the model makes finding the analytical solution difficult. Therefore, 
we split the full model into two cases of individual enzyme hydrolysis action and 
perform mathematical analysis of a single pure enzyme of both cases. The 
approximate solutions for both cases were derived by employing the asymptotic 
analysis method. The integrodifferential equation in the first case is solved using 
Laplace transform. Some significant characteristics are captured. The higher the 
rate of exposure of cellulose substrates to enzymes, the higher the number of 
cellulose chains generated from the breakage process. And also, the rate 
coefficient for CBH1 to locate and thread a reducing end of a cellulose chain is a 
key factor in bioconversion. 
Keywords:  cellulose, enzymatic hydrolysis, kinetics model, asymptotic analysis, 
population balance equations, Laplace transform. 

1 Introduction 

Kinetic theory is a way to describe the time evolution of probability distributions 
of various elementary objects in a system. The scheme is formulated as partial 
differential equations called kinetic equations for the probability distributions. 
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Kinetic equations have been used in describing polymeric fluid flows [1, 2], active 
biological systems [3] and solid materials. Meanwhile, the kinetics equations of 
enzymatic cellulose hydrolysis in creating ethanol in green energy has been 
extensively studied, and many kinetic models have been proposed. Some of the 
models have been derived based on empirical descriptions [4], Michaelis-Menten 
type equations [5] and experimental observations [6]. Most of these works are 
successful, at least partially, in tracing the complicated cellulose-cellulase system 
quantitatively. However, most of the kinetic models do not take into account all 
important feature e.g. the different action of enzymes, the event of insoluble and 
soluble cellulose chains, the distribution of cellulose chain lengths, and the time 
evolution of the biomass particles accessibility to cellulases. 
     Griggs et al. [7] tackled the major factors mentioned in the previous paragraph 
by using population balance equations (PBE), a technique that describes the 
changes in cellulose chain length distribution. Their kinetic model attained 
computationally efficient result since it not require to working out equations for 
all chemical species exist in the reacting mixture. For these reasons, the current 
kinetic model for enzymatic hydrolysis of cellulose proposed by Griggs et al. [7] 
will be discussed in this paper. The kinetic model depends on the nature of the 
cellulolytic enzymes employed in the hydrolysis that are Trichoderma reesei 
endoglucanase I (EG1) and an exoglucanase cellobiohydrolase I (CBH1), as well 
as the structure of cellulose particles. The purposes of both enzymes are to break 
long cellulose chains into short ones. This feature is also known as 
depolymerization processes. An understanding of this model is important in 
designing reaction vessels and optimizing process parameters. This kinetic model 
provides a deeper understanding, improve predictive capabilities, and ultimately 
provide more directed and rational approaches for process design and 
optimization. 

2 Kinetic model formulation 

Cellulose is an insoluble polymer, composed of repeating units of glucose linked 
by β-(1,4)-glycosidic bonds and having varied degrees of polymerization [8]. 
Naturally-occurring cellulosic particles have a wide distribution of chain lengths. 
The availability of accessibility of the cellulose to enzyme hydrolysis can depend 
on the chain length [9]. The measure of enzyme-accessible cellulose deviate from 
the total cellulose in a reaction mixture because of the arrangement of cellulose 
chains in the cellulose particles.  
     We treat the cellulosic substrates as “populations” of various chain lengths. We 
let P(x) be an insoluble cellulose chain comprised of x anhydroglucose units. Here, 
x  is treated as a continuous variable for the sake of simplicity. Suppose p(x, t) is 
the population distribution of enzyme-accessible cellulose chains (concentration 
of the unthreaded surface exposed cellulose) of length x at time t in a unit volume. 
Then, p(x, t)dx is the number of cellulose chains in the length range (x, x + dx) per 
unit volume at time t.  
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     With the distribution function p(x, t), one can define the nth moment of the 

distribution function as      
0

, .n np t x p x t dx


   The zeroth moment, p(0), gives the 

total number of cellulose chains at time t in a unit volume. The first moment p(1) 
is the total number of monomeric glucans comprising the cellulose chains at time 
t. The number-averaged chain length is denoted by    1 0/Nx p p . The mass-

averaged chain length is the ratio of the second to first moments    2 1/Mx p p , 
where the number density is proportional to the mass of the cellulose chain by 
assuming the monomeric glucan unit has a constant mass [7].  
     The set of modelling equations as proposed in [7] are as follows:  
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where  ,Bp x t  is the distribution of CBH1-threaded cellulose chain with length 

x, and  ip x  is the population distribution of inaccessible cellulose. CBH
fk  is the 

rate for CBH1 to adsorb on the cellulose chains, CBH
hk  is the rate for CBH1 finds 

and threads the CBH-threaded cellulose chains which also known as the rate of 
processive hydrolysis,  EG

hk x  is the rate for EG1 finds and cleave the cellulose 

chains of length x, EG
sE  and CBH

sE  are surface-adsorbed EG1 and CBH1, 
respectively. The term  Ω ,x y  is known as the breakage kernel. We assume that 
the pretreated biomass particles are monodisperse cylindrical shaped with radius 
R and length L. Denote 0R  as the thickness of single cellulose chains and  lossr  is 
the rate of loss of cellulose during enzymatic hydrolysis. 
     Due to the complexity of the system, which arises from the integrodifferential 
equations makes finding the analytical solution difficult. To solve the system of 
equations, we perhaps have to resort to numerical methods that can incur 
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significant computational cost. Our strategy here is to look for reduced order 
models by ignoring significantly small terms in the governing system of equations. 
We employ the asymptotic analysis for dynamical systems to reduce the complex 
model to a set of simple equations. The resulting approximate solutions of a simple 
model may not fully capture all the details of the complex system. However, it 
usually captures some important characteristics and provide insights into potential 
dynamical and chemical mechanisms and their dependence on parameters. This 
paper will present the mathematical analysis of the independent action of EG1 or 
CBH1 from the kinetic model that will be formulated as Model I and Model II, 
respectively. The goal is to ensure that mathematical results are consistent with 
physical requirements.  
     Given  Ω , 1/x y y  and the rate coefficient   0.002 h

E
h

EG G
k x k x  which 

dictate more frequent action by EG1 on longer chains. We introduce the 
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   where 0t  is the characteristic time and    0 0p  is the initial total 

population density. x has already been made dimensionless so that it represents 
number of andhydroglucose units. Suppose (0)( ,0) (0) ( )p x p g x  where  g x  is 

the initial size distribution. Hence,     , 0x g xp     and    0 /in RR R   . 
We take the thickness of a single glucan 0 1R  nm and 100inR  nm. Therefore, 
   0 100R    . 
     The full model is split into two limiting cases of individual enzyme hydrolysis 
i.e. pure action of EG1 and pure action of CBH1 so called Model I and Model II, 
respectively. Model I describes the independent action of EG1 where we assume 
that the coefficients in the full model related to CBH1 are very small as follows: 
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     Likewise, Model II deal with individual action of CBH1 enzyme by assuming 
that the coefficients associated with EG1 are very small as follows: 
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     The mathematical analysis of Model I and Model II will be conducted 
separately in the next section. 

3 Model I (independent action of EG1) 

In this section, we will focus to study how random-chain scission by EG1 changes 

a population of cellulose chains. Let    0 0

1
0EG

h

t
k p

   and we introduce the 

dimensionless parameter groups as following:    0 0

EG
sE

a
p

 ,  1
 i

i

p
b

p
 , 

 

    
1

20 0
loss

EG
h

r
c

k p
 


, and 

   0

2
0

0
2

p
d

n R L
 . The reduction in the number of 

parameters makes theoretical manipulations easier, for the equations are less 
cluttered. Take 500a  . We can dictate that    1

i ip p x  since  1
ip  always give 

us a large number of glucan units of inaccessible cellulose chains (located in the 
interior of a cylinder) compared to the number of inaccessible cellulose chains of 
length x. We also argue that the rate of loss of cellulose of length x due to 
enzymatic hydrolysis,  1

lossr , is small compared to    0 0p  because the initial total 
number of cellulose chains give a very large value. Hence, we denote the small 
terms b  and c  as   and omitting the 'hat' for notational simplicity therefore we 
obtained: 
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subject to initial conditions    ,0p x g x  and  0 100R t   . From this 

system, we can solve R independently, yields 10000 2 .R d t    This equation 

Energy and Sustainability V  503

 
 www.witpress.com, ISSN 1743-3541 (on-line) 
WIT Transactions on Ecology and The Environment, Vol 186, © 2014 WIT Press



describes the behavior of the radius of the cellulose particle. It is obvious that this 
equation agrees to our expectation that the radius of particles will be decreasing 
over time during the hydrolysis. These phenomena explain the effect of the 
enzyme which breaking the polymer chains on the surface of cylinder particles 
and make the interior part exposed. Further, the enzyme will react on the exposed 
part. This process occurs repeatedly until the cylinder particles become thin. In 
order to get insight of how fast the radius will decrease, we fixed 0.001   and 
varied the value of d  by setting 1000, 2000, 3000d   as illustrated in Figure 1. It 
showed an increased in the rate of radius thinning with increased d . 
 

 

Figure 1: The evolution of radius of cellulose particles during enzymatic 
hydrolysis. The radius thinning increased with increased . 

     Next, by denoting    
1, : 1t d

R t
   , eqn (1) can be rewritten as 
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Note that  0 , 1t d   since 1R  . In general, analytical solutions to 

population balance equations are very difficult to obtain. The approach to solving 
integrodifferential equations is usually to apply the Laplace transform method with 
hopes that an inverse to the transfer function is readily available. 
     The integrodifferential equation in eqn (2) can be transformed in a partial 
differential equation using Laplace transformation in the particle size variable. We 
define the Laplace transform of the particle size distribution with respect to the 
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length variable as       
0

, , , .sxs t p x t p x t e dx


    Since 

   
0

0, ,  t p x t dx


   equal to the zeroth moment of  ,p x t , we set 

 0, 1tt e t     based on a formulation in [10]. Hence, by taking the Laplace 
transform of eqn (2), we obtain 
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with boundary conditions  0, 1tt e t     and  , 0t   . Taking Laplace 

transform of the initial condition of  ,p x t , we have the initial condition for eqn 
(3) given by 
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     If the initial particle length distribution is monodisperse with dimensionless 
size unity i.e.    1g x x  , then  ,0 ss e  . Since there is a parameter in 
the equation that is relatively small, we are interested in using what is known as 
asymptotic expansions to find approximate solutions of the differential equation. 
We used asymptotic method to provide a reasonably accurate expressions for the 
solution. In other words, for small  , it is assumed that 
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boundary conditions. The next term is important as it gives a measure of the error. 

For O(  ) and O( 2 ),  1 , 0s t   and  
 

2

2 2, 1
2

ss t
s t


 
  
  

, respectively. 

Therefore we have that 
 

  
 

 
 

 

2 2 2
2

2 2

2
, 1 .

2
s tt t t ss t e

s t s t s t
  
 
    
    

   (4) 

 
Then, the Laplace transform (eqn (4)) can be inverted to give the solution to the 
original problem by taking 0  : 
 

      2, 1 2 1 .t xtp x t e x t t x e          (5) 
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     That eqn (5) is a solution to eqn (2) can be verified by substitution. The 
moments follow by integrating eqn (5) yield    0 1tp t e t    and 

   1 1tp t e  . The evolution of the zeroth and first moments are illustrated in 
Figure 2. Results clearly show that the zeroth moment of the particle size 
distribution is increasing, since, during breakage, the total number of particles is 
increasing. The behavior of the first moment indicates that the total number of 
glucan units is conserved until end of the hydrolysis process. 
 

 

Figure 2: Time evolution of the zeroth and the first moments predicted by the 
approximate analytical solution. The number of particles increase 
while the number of glucan units is conserved. 

4 Model II (independent action of CBH1) 

The case of random scission by EG1 has been analyzed extensively from the 
mathematical point of view in the previous section. In this section, we account for 
two glucans depolymerization in the enzymatic hydrolysis of cellulose by CBH1, 
an enzyme that performs processive chain-end scission. Here we put 
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     We set 1e   and  1g   as a reference case and the variation of these values 
can be found in Parameter Analysis subsection. With the same reason as in Model 
I, we assume   b  and  f  are small terms so that we can represent them as  . 
Hence, by putting the above setting, 
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with the initial condition    ,0p x g x  and  0 100R t   . We solved R 
independently, and we attained the same result for particle radius as discussed for 
Model I. We conclude that EG1 and CBH1 enzymes are both responsible for the 
reduction in radius of cellulose particles independently. 

     Next, we solve for  ,p x t . By denoting    
1, : 1t d

R t
   , we may write 
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transforms are not suited to apply here since integrodifferential term does not 
appear in this model. By using asymptotic approximation, we assume 
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0 1 2~ , , ,p p x t p x t p x t     For O(1),    0 , 1 tp x t x e    

whereas for O(  ),  1 , 0p x t  . For O( 2 ),    2 , 1 tp x t e    and 

 , 0np x t   for 3n  . Therefore we have      2, 1  1t tp x t x e e       . 
By taking 0  , 
 

    
2 2
2

2 2

,
1

2
.B tB Bp x t p x px x e

x x



  

   
  

  
 

     The boundary conditions lim 0B

x

p
x





 were used. Initial particle size 

distribution and their evolution can be represented by a gamma distribution 
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 
 

 

0
1 /,0  ,

Γ
n xB

B
pp x x e 

 
   [7] where ,    and  0

Bp  determine the mean, 

width, and total size of the distribution. In this paper, the parameters 101  , 
1.5     and  0 900Bp   was used for an example simulation. We obtained the 

result for Model II using pdepe solver in MATLAB. The progression of chain-end 
scission is shown in Figure 3. The maximum peak moves to the left as time passed 
by which indicates the cellulose chains has been reduced to shorter chains. 
 

 

Figure 3: The evolution of Bp  distribution undergoing chain-end scission with 
1e   and 1g  . 

4.1 Parameter analysis 

We performed parametric sensitivity analysis to study the influence of CBH
fk  (rate 

coefficient for CBH1 to locate and thread a reducing end of a cellulose chain) and 
CBH
hk  (rate coefficient for processive hydrolysis by CBH1) by varying the value of 

e  and g  in eqn (6), respectively. We study the sensitivity of parameter g  in 
Model II based on different setting: (a) 0.5g   and (b) 2g  . The variation of 
this parameter was used to determine the change in CBH

hk . It should be noted that 
for these two cases, parameter e  is fixed to 1. The resulting effect of the CBH

hk  on 
the particle size distribution of Bp  can be seen in Figure 4 and 5. It becomes 
obvious that the performance of the distribution improves with higher CBH

hk  
loading. Next, we fixed the value of g  to 1 and varied e . The result shows that 
the conversion of insoluble cellulose chains to soluble sugars is not sensitive to 
the CBH

fk  values.  
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Figure 4: The evolution of Bp  distribution undergoing chain-end scission with 
1e    and 0.5g  . 

 

Figure 5: Time evolution of Bp  distribution undergoing chain-end scission with 
1e   and 2g  . 

5 Conclusion 

We analyzed two separate models for enzymatic hydrolysis of cellulose: Model I 
is for independent action of EG1 and Model II is for pure CBH1 action. By using 
asymptotic analysis, we derived the approximation solutions for both models. As 
a result, both models gave the same behavior where the number of cellulose chains 
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increases over time. This is due to the effect of both enzymes in breaking the 
cellulose chains into smaller ones so that more cellulose particles are generated. 
The higher the rate of exposure of cellulose substrates to enzymes, the higher the 
number of cellulose chains generated from the breakage process. And also, the rate 
coefficient for CBH1 to locate and thread a reducing end of a cellulose chain is a 
key factor in bioconversion.  
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