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Abstract 

This paper formulates a response prediction formula based on complex modal 
superposition and frequency response functions of single-degree-of-freedom 
systems for both storey drift and floor acceleration of a mid-storey-isolated 
building under the assumption of white noise input. This study verifies that the 
proposed formula can estimate the seismic response of a building accurately, 
even if a system includes the overdamped mode, by comparing the same with the 
results of a time-history analysis. To support the structural design of a mid-
storey-isolated building, the proposed formula is applied to an optimal design 
problem, which considers the objective function of acceleration response in a 
superstructure and constraints on storey drifts. A genetic algorithm is employed 
to obtain the optimal stiffness distribution and damping coefficient of the 
isolation layer. This study confirms that the acceleration response of the optimal 
design is successfully reduced, with other responses remaining within acceptable 
ranges. 
Keywords: mid-storey-isolated buildings, performance-based design, floor 
acceleration response, complex complete quadratic combination method, over-
damped vibration. 

1 Introduction 

In Japan, the Building Standard Law regulates seismic design. Two levels of 
seismic loads are prescribed under this law for preventing structural damage to 
buildings under moderate and severe ground motions. However, the law only 
focuses on structural deformation and ultimate resistant force. The acceleration 
response during an earthquake may lead to serious damages, such as toppling of 
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furniture or collapse of ceilings. In fact, such damages have occurred in recent 
large earthquakes. 
     A base isolation system is a highly effective approach to reducing the 
acceleration response of a building, and an increasing number of base-isolated 
buildings have been constructed in Japan. In addition, a mid-storey-isolation 
system [1–9] has been devised, and there exist practical examples. However, a 
design scheme which considers both structural deformation and acceleration 
response has not been proposed so far. 
     In this study, first, a response prediction formula based on complex modal 
superposition and frequency response functions of single-degree-of-freedom 
(SDOF) systems for both storey drift and floor acceleration is formulated under 
the assumption of white noise input. The derived formula is extended from a 
response spectrum method for a non-classically damped system proposed by 
Igusa et al. [10] and Zhou et al. [11] considering overdamped modes, and is 
expressed in a simpler and more uniform form than that proposed by Song et al. 
[12]. The estimation accuracy is then examined by comparing the results of a 
time-history analysis using a mid-storey-isolated building model. Finally, the 
proposed formula is applied to the optimal design of a mid-storey-isolated 
building, and the seismic performance of the optimal design is verified. 

2 Response prediction formula considering overdamped 
modes 

We focus on the mass shear spring model of an N-storey building, which 
responds in the linear-elastic range. When the system is excited by ground 
motion, its state-space equation of motion is described as follows: 

 gssssssss x&&& gxBx =+ , (1) 
where 
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     M, C and K are the mass, damping and stiffness matrices, respectively. The 
N-component vector x(t) is composed of the displacement of the mass point i 
relative to the ground, xi(t); )(g tx&&  represents ground acceleration, and 1 is an N-
component column vector in which all elements are 1. 

2.1 Overdamped modes 

The equation of motion for free vibration, i.e. 0xBx =+ ssssss& , induces the 
following eigenvalue equation and characteristic equation: 

 0BI =+ ssss )( ϕΩ  and 0)det( ss =+ BIΩ , (5), (6) 
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where Ω  is the eigenvalue, and ϕss is the right eigenvector. The nth mode vector 
ϕssn can be expressed by the nth eigenvalue nΩ  and the nth displacement mode 
vector ϕn as follows: 

 TT
n

T
nnn Ω }{ss ϕϕϕ = . (7) 

     Let mode numbers n = 1, 2, ..., M represent underdamped vibration and n = M 
+ 1, M + 2, ..., N overdamped vibration. We obtain M complex conjugate pairs of 
Ω  and ϕss related to underdamped modes, and (N − M) real value pairs of Ω  
and ϕss related to overdamped modes. The state vector xss is expressed by the 
modal coordinate qss as follows: 

 ssssss qx Φ= , (8) 
where 
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     The asterisks indicate complex conjugates, and ∗
+ = nNn ssss ϕϕ  (n = 1, 2, ..., 

M) for underdamped modes. The pairs of ϕssn and ϕssn+N (n = M + 1, M + 2, ..., 
N) are associated with overdamped modes. 
     Using the modal matrix, the equation of motion is decoupled as follows: 

 gssssgss
1

ssssssss
1

ssssss
1

ss xx &&&&&& ΓΩΦΦΦΦΦ =−⇔=+ −−− qqgqBq  (10) 
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where Γn is the nth element of the 2N-component vector ss
1

ss g−= ΦΓ  and is 
referred to as participation factor of the nth mode. The diagonal matrix 

ssss
1

ss)(diag ΦΦΩ B−−== nΩ  has nΩ  in its (n, n) element. For underdamped 

modes, 21i nnnnnΩ ζωωζ −+−= and 21i nnnnNnΩ ζωωζ −−−=+ are complex 
conjugate pairs, where ζn and ωn are the damping factor and the natural circular 
frequency of the nth mode, respectively, and i is the imaginary unit. For 

overdamped modes, 12 −+−== +
nnnnnn ΩΩ ζωωζ and nnnNn ΩΩ ωζ−== −

+  

12 −− nn ζω are real values. These parameters have the following relations: 
     For underdamped modes (n = 1, 2, ..., M), 

 nnn ΩΩ )sgn(Im=ω , nnnn ΩIm1 2
d =−= ζωω  (12), (13) 

 and nnn ΩΩ /)Re(−=ζ . (14) 

     For overdamped modes (n = M + 1, M + 2, ..., N), 

 −+= nnn ΩΩω , 12
d −= nnn ζωω  (15), (16) 
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2.2 Modal superposition 

The solution of eqn. (11) is given by 
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     By substituting eqn. (19) in eqn. (8), 
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and using the nth mode participation vector nnn Γ φb = , the lower half of xss 
gives the displacement vector x as follows: 
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where 
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and hn(t) is the displacement response of an SDOF system with natural circular 
frequency ωn and damping factor ζn under ground motion. Eqns. (21)–(23) are 
the rigorous forms of modal superposition considering overdamped modes. 
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2.3 Response prediction formula considering overdamped modes 

Next, following the response spectrum methods for a non-classically damped 
system, a response prediction formula for storey drift and floor acceleration is 
formulated under a white noise input considering overdamped modes. Using eqn. 
(21), the autocorrelation of xi is expressed as follows: 
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where ai,n and ci,n are the ith components of an and cn, respectively. The one-sided 
power spectral density (PSD) of xi is given by 

 
[ ]

)()()(

)(i)(

*
0

1 1
,,

2
,,,,,,

ωωω

ωωω

nm

N

m

N

n
nimimininiminimixx

HHG

cccacaaaG
ii

⋅

+−+= ∑∑
= =  (25) 

where 
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which is the frequency response function of the SDOF system with the nth mode 
characteristics, and G0(ω) is the PSD of the ground acceleration. 
     The square power of xi is derived as follows: 
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where 
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     Igusa et al. [10] provide the cross-spectral moments λl,mn for response to the 
white-noise input G0. 
     Introducing the modal correlation coefficients VVVDDD and, mnmnmn ρρρ  defined by 
Zhou et al. [11], eqn. (27) gives 
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     Introducing the parameter nnn ,0Reλ=Λ , which is the standard deviation of 
the displacement of the nth mode SDOF system under white noise input G0, the 
root-mean-square (RMS) value of xi is given by 
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     Similarly, the RMS value of the storey drift in ith storey is given by 
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where 
 ninini aaa ,1,,

~
−−=  and ninini ccc ,1,,

~
−−=  (32), (33) 

and a0,n = c0,n = 0. The parameter hbi is the ith storey height. 
     The absolute acceleration response is given by the equation of motion: 

 )()()()( 11
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     By substituting eqn. (21) in (34),  
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where 
 nnn Ω bCMKMb )(ˆ 11 −− +−= . (36) 

     Because eqn. (35) is the same as eqn. (21), the RMS value of the acceleration 

response is deduced from eqn. (30) by substituting nb̂  for bn: 
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where nia ,ˆ  and nic ,ˆ  are the ith component of the following vectors, respectively: 
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3 Verification of response prediction formula 

To examine the accuracy of the proposed response prediction formula, a 16-
storey-building model was considered, in which an isolation system composed of 
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an isolator bearing and a damper was inserted in the fifth storey. The building 
was modelled as a mass-spring system, with a mass of 1 × 106 kg for each mass 
point. 
     The height of each storey was assumed to be 3.5 m, and the total height of the 
model was 56 m. The stiffness distribution of normal storeys (those without the 
isolator) was calculated on the basis of the Ai distribution of the Building 
Standard Law of Japan for a building with a fundamental natural period of 1.68 
s, neglecting the isolation system. Stiffness proportional damping C = (2 ζ1 / ω1) 
K was assumed with a damping factor ζ1 of 0.02 for the normal storeys, and the 
proportionality factor between the damping coefficient and stiffness was 
maintained during the optimization process. The stiffness of the isolator was 
assigned so that the natural period of an SDOF system considering the mass of 
the superstructure (isolation period) is 3 s. The damping coefficient of the 
isolation system was given as 3 × 107 Ns/m. It is supposed that the system 
responses are in the linear elastic range. 
     Fig. 1 shows the modal properties of the fifth-storey-isolated building. Modal 
participation vectors bn are depicted by the amplitude and phase distributions. An 
overdamped mode appears in the fourth mode, and a pair of real value vectors is 
shown in the graph rather than the amplitude and phase. Fig. 2 shows the modal 
participation vectors of the absolute acceleration response nb̂ . The vectors are 
large even in higher modes, especially in the lower part of the building. 
     The RMS response values estimated by the proposed formula were compared 
with those calculated by the time-history analysis in fig. 3. The white-noise 
 

 

Figure 1: Modal participation vectors of a fifth-storey-isolated building. 
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Figure 2: Modal participation vectors of absolute acceleration response of a 

fifth-storey-isolated building. 

ground acceleration with G0 = 1.19 × 10−5 m2·s−3 is generated by a random 
Fourier phase spectrum and a constant Fourier amplitude spectrum. The 
integration time interval and duration of input motion are 0.001 s and 300 s, 
respectively. 
     Fairly good agreements are confirmed in fig. 3. The storey drift in the 
isolation storey was omitted on the graph because this value was considerably 
larger than the storey drift in other storeys. A good agreement up to three digits  
 

 
Figure 3: Comparison of RMS response values between the proposed 

formula and a time-history analysis; left: storey drift and right: 
absolute acceleration response. 
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was also confirmed with respect to the deformation of the isolation storey, which 
was 0.00148 m. Note that the RMS absolute acceleration of the ground level is 
also shown in fig. 3 for reference purposes. 

4 Optimal design of a mid-storey-isolated building 

The proposed response prediction method was applied to the structural 
optimization of a mid-storey-isolated building. The proposed method enables us 
to avoid performing a time-history analysis, which has a higher computational 
cost when long-duration ground motions are to be input. A genetic algorithm was 
employed for optimization, and the 1000th generation was selected as the 
termination condition for the optimization. The model described in the previous 
section was used as the initial design. The following objective function 
(maximum RMS absolute acceleration in the superstructure) and constraints 
were introduced in the optimization process: 
 ( )])[(max),...,,,(Minimize 2

g551621 xxEckkkJ ii
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 ini55 kk >  (43) 
 rad600/1max RMS5,

<
≠ iii

θ  (44) 

 and m1.0RMS55b <θh  (45) 

where ki and ci represent the stiffness and damping coefficient of the ith storey, 
respectively. The subscript ‘ini’ refers to the initial model. The constraints (41) 
to (45) provide the monotonically decreasing stiffness, maximum total stiffness, 
minimum isolator stiffness, storey deformation restriction, and isolator 
deformation restriction, respectively. 
     The optimization results are shown in fig. 4 (stiffness and damping coefficient 
distributions), fig. 5 (RMS response values), fig. 6 (modal participation vector) 
and fig. 7 (modal participation vector of absolute acceleration response). 
 

 

Figure 4: Comparison of stiffness and damping coefficient distributions 
between the initial and optimal designs. 
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Figure 5: Comparison of RMS response values between the initial and 
optimal designs; left: storey drift and right: absolute acceleration 
response. 

 
Figure 6: Modal participation vectors of the optimal design. 

     It is noteworthy that the stiffness of the storeys above and below the isolation 
storey coincide (fig. 4 left), and the damping coefficient of the isolation storey 
was reduced in the optimal design (fig. 4 right), which consequently resulted in 
zero overdamped modes (figs. 6 and 7). The absolute acceleration response of 
the superstructure was successfully reduced, especially in the upper storeys 
(fig. 5 right). Both absolute acceleration response of the substructure and storey 
drifts in many storeys increased in the optimal design (fig. 5), but both remained 
within acceptable ranges. It is demonstrated that the proposed response 
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prediction formula can help find a suitable structural design considering both 
structural deformation and acceleration response. 
 

 

Figure 7: Modal participation vectors of the absolute acceleration response of 
the optimal design. 

5 Conclusions 

This paper proposes a formula based on complex modal superposition and 
frequency response functions of single-degree-of-freedom systems for the 
estimation of storey drift and floor acceleration under the assumption of white 
noise input. The formula can estimate the seismic response of a building 
accurately, even if a system includes the overdamped mode. The proposed 
formula was applied to the structural optimization of a mid-storey-isolated 
building, and it was verified that the absolute acceleration of the superstructure 
could be successfully reduced, with other responses remaining within acceptable 
ranges. 
     With respect to input ground motion, future studies are required to investigate 
the applicability of the proposed formula to seismic ground motion, rather than 
white noise. The seismic performance of an optimal design under seismic ground 
motion also needs to be examined. 
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