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Abstract 

In order to evaluate the reliability of a rigid-plastic method in estimating the 
earthquake displacement ductility demand, the present paper applies the method 
to hundreds of different elastic-plastic oscillators under more than thirty recorded 
earthquakes. The mean ratio of the predicted value over the exact value of the 
displacement ductility demand is computed and plotted as a function of the 
vibration period of the oscillator for different values of the yield acceleration. 
The results show that, whatever the oscillator and the earthquake, the rigid-
plastic method leads to a generally conservative estimate of the inelastic 
displacement demand. Mean errors less than 15% are found both for 
comparatively short-period oscillators and for comparatively long-period 
oscillators. For medium-period oscillators, the relative mean error is generally 
less than 30%, even for very high levels of ductility demand. Some advantages 
of the rigid-plastic method with respect to other approximate methods are also 
discussed in the paper. 
Keywords: earthquake ductility demand, seismic inelastic displacement 
prediction, rigid-plastic method. 

1 Introduction 

The assessment of the earthquake ductility demand on structures is often carried 
out by means of approximate methods, most of which are based on the theory of 
linear elastic oscillators, cf. e.g. Rosemblueth and Herrera [1]; Gulkan and Sozen 
[2]; Iwan [3]; Kowalsky et al. [4]; Newmark and Hall [5]; Miranda [6]. 
     An alternative method was proposed by Paglietti and Porcu [7] and 
subsequently improved by Porcu and Carta [8, 9], which predicts the maximum 
plastic displacement of an elastic-plastic oscillator from that of a rigid-plastic 
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oscillator possessing the same ratio between yield strength and mass (yield 
acceleration). The peak displacement of the latter can be obtained from the 
earthquake rigid-plastic pseudo-spectrum, which is a single-curve response 
diagram (Paglietti and Porcu [7]; Domingues Costa et al [10]; Porcu and Mascia 
[11]). Section 2 recalls how the rigid-plastic method can be applied in practice. 
     To evaluate the reliability of such a method, the present paper analyses the 
results from hundreds of different elastic-plastic oscillators subjected to a 
significant variety of recorded ground motions. The mean ratio between  
estimated and calculated values of the displacement ductility demand is 
evaluated as a function of the period T of the oscillator for different values of the 
yield acceleration. The results provided in Section 3 show that the rigid-plastic 
method is generally conservative. Moreover, it leads to small relative errors both 
in the short and in the long period range. Whereas in the medium period range 
the error may reach 30%. In order to keep the errors of the rigid-plastic method 
below small percentage also in this range, an improvement of the empirical 
formula to be applied for medium period oscillator would be advisable. It should 
be noted, however, that these errors usually refer to high levels of ductility 
demand. 
     Some favourable features of the rigid-plastic method are finally discussed in 
Section 4. The method may be, in fact, faster to apply than other approximate 
methods available in current literature, which usually require iteration procedures 
to estimate the ductility demand on a structure. In addition, it singles out the 
range of periods in which the considered elastic-plastic oscillators may 
plastically yield under a given earthquake. This is a general result, which can be 
exploited by any method that aims to predict the earthquake inelastic 
displacement demand. Also when compared to other approximate methods, the 
rigid-plastic method is shown to provide good enough estimates, even when the 
plastic displacements are very large. 
     Other authors adopted a rigid-plastic approximation to model the response of 
ductile structures (e.g. Makris and Black [12]; Hibino et al. [13]). A rigid-plastic 
approach was also recently proposed by Domingues Costa et al. [14], which 
predicts the maximum plastic displacements of MDOF buildings by means of 
equivalent generalized SDOF systems. Thanks to this, the rigid-plastic method 
applied in the present paper could also be exploited to assess the seismic ductility 
demand of MDOF systems. 

2 The rigid-plastic method prediction 

The earthquake ductility demand of an elastic-perfectly-plastic oscillator can be 
defined by means of the following ratio: 
 

 max

y

u

u
  , (1) 

 

also referred to as the ductility factor or displacement ductility ratio (Chopra 
[15]). Here maxu  is the absolute value of the maximum displacement of the 
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oscillator, while yu  is the absolute displacement at yield.  When the elastic-

plastic oscillator deforms into the plastic range, maxu  is greater than yu  and, 

consequently, the ductility factor becomes greater than unity. In this case, 

maxu can be decomposed as follows: 
 

 max max
P

yu u u  , (2) 
 

where max
Pu denotes the absolute value of the maximum plastic displacement. The 

ductility ratio then becomes: 
 

     max1
P

y

u

u
   , (3) 

 

     On the other hand, the absolute displacement at yield yu  is given by: 
 

 
2

24π

y
y y

F T
u a

k
  , (4) 

 

k, T, Fy and ya  being the stiffness, the natural period of vibration, the yield 

strength and the yield acceleration of the oscillator, respectively. The yield 

acceleration is given by the ratio between the yield strength yF  and the mass M  
of the oscillator, and represents the maximum acceleration that the oscillator may 
reach during the motion (Chopra [15]; Paglietti and Porcu [7]). All 
displacements are here intended to be relative to the ground. 
     In view of eq. (4), the ductility factor can be also expressed as: 
 

 
2

max2

4π
1  P

y

u
T a

    (5) 

 

This equation shows that assessing the ductility demand for an elastic-plastic 

oscillator requires that max
Pu  be known. For a given earthquake, max

Pu  depends on 

the oscillator vibration period T, damping ratio   and yield acceleration ya . It  

should be calculated by numerical integration of the non-linear equations of 
motion of the elastic-plastic oscillator.  
     The rigid-plastic method proposed by Porcu and Carta [9] provides a simpler, 

though approximate, way to predict max
Pu . It leads to the following formulae: 

 

 max max = P RPu u    for 0.13 *T T , (6a) 
 

 max max + P RP pu u u     * *for  0.13T T T  , (6b) 
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 max max *
 = P RP T T

u u
T T




   *for T T T  , (6c) 

 

 max = 0Pu    for T T ,   (6d) 
 

where 
 

 
 .

2* * 2

* *4

2.5 1  
 = 0.039 1 1.13 0.13

    

y

p
y

a
T T Tg T Tu a

T T T

  
                                         

 
 

 
     

 

 (7) 
 

In the above formula time should be expressed in seconds.  

     In equations (6a)-(6c) max
RPu  represents the maximum displacement that would 

be reached under the given earthquake by a rigid-plastic oscillator possessing the 
same yield acceleration as that of the elastic-plastic oscillator under 

consideration. For a given earthquake max
RPu  only depends on ya , and can be 

calculated by integrating the non-linear equations of motion of the rigid-plastic 
oscillator, which are simpler than those of the elastic-plastic one (Paglietti and 
Porcu [7]). Alternatively, and more quickly, it can be obtained from the rigid-
plastic pseudo-spectrum of the earthquake, (cf. Paglietti and Porcu [7]; Porcu and 

Mascia [11]; Domingues Costa et al. [10]). An instance of how obtaining max
RPu  

from a rigid-plastic pseudo-spectrum, for a given value of ya , is provided in 

Figure 1. 
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Figure 1: Obtaining max
RPu  from the earthquake rigid-plastic pseudo-spectrum. 
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     Quantities *T  and T  appearing in eqns (6) and (7) are two characteristic 
values of period that depend on the earthquake and are function of ya  and  . 

They can easily be obtained by intercepting the displacement elastic response 
spectrum with the following curves (Porcu and Carta [8]): 
 

 
2 2

* max
2 2

8π
( , )  1

4π

RP
y

y
y

a T u
u T a

a T
  , (8) 

  
2

2
,

4π

y
y y

a T
u T a    (9) 

 

Figure 2 shows how obtaining *T and T from an elastic response spectrum. 
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Figure 2: Determining *T  and T  from the elastic displacement response 
spectrum (for 0.2ya g ).   

     Once that max
RPu   is taken from the rigid-plastic pseudo-spectrum and the pair 

of characteristic periods *T  and T  are found from the elastic response 
spectrum, max

pu  can be predicted directly from eqns (6) and (7). An example on 

how to get such a prediction is given in Figure 3. 

     By introducing the estimated value of max
pu  into eqn (5), the ductility factor 

  is finally obtained. For the same instance considered in Figures 1-3, Figure 4 

plots both the predicted and the “exact” values of the ductility factor  .  

Figure 4 shows that   tends to unity as T tends to T . Indeed, for T T  it is 

max 0pu   and, therefore, 1  , as follows from eqn (5). According to eqn (5), 

*T  

Curve (9) 

T (s) 

Curve (8)

T  

max
ELu (m)
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moreover, for any given value of ya  the ductility factor tends to infinity as T 

tends to zero. This makes a direct comparison between predicted and “exact” 
values of   inaccurate in the short-period range. For this reason, the ratio 

between predicted and exact values of   will instead be considered in the next 

section, which allows for a comparison in the whole range of periods. 
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Figure 3: Predicting the peak plastic displacements through the rigid-plastic 
method. 
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Figure 4: Predicting the ductility factor   by means of the rigid-plastic 

method. 
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3 Mean relative errors in the rigid-plastic prediction 

In order to evaluate the relative errors that can be made when estimating the 
earthquake ductility demand by means of the rigid-plastic method, the ratio 
between the earthquake displacement ductility factor as estimated by means of 
the rigid-plastic method, say  , and the “exact” value  of the same factor 

computed by a non-linear time-history analysis will be considered below. In 
view of eq. (3), this ratio can be expressed as: 
 

 max

max

P
y

P
y

u u
r

u u





 




, (10) 

 

where max
Pu  indicates the plastic displacement estimated through eqns (6) and (7) 

and max
Pu  the calculated “exact” value. The ratio r  gives the relative error we 

introduce when estimating the ductility factor   with the rigid-plastic method. 

A comparison between eqn (10) and eqn (3) shows that r  also gives the ratio 
between the estimated and the calculated total displacements. 
     As the estimated and the calculated values of the plastic displacement tend to 
coincide, the ratio r  tends to unity, which means that no error is committed in 
estimating the ductility demand, or, similarly, the total displacement. This 
obviously happens if  T  equals zero (rigid-plastic behaviour), and also when T  

is equal to *T , since in both these cases max max
p Pu u  . On the other hand, r  is 

equal to unity also when T T , since it is max max 0p Pu u  . In all these cases, 

the rigid-plastic method predicts the earthquake displacement demand exactly. 
Otherwise, some errors can be produced. 

Table 1:  Earthquakes considered in the present investigation. 

1 Ardal (Iran), LONG, 1977 17 Landers (California), LCN000, 1992 
2 Cape Mendocino (Cal), PET090, 1992 18 Loma Prieta (Cal), CLS000, 1989 
3 Cartago (Costa Rica), LONG, 1991 19 Mammoth Lakes(Cal), LLUL000, 1999 
4 Chamoli (India), N20E, 1999 20 Montenegro, N-S, 1979 
5 Chi Chi (Taiwan), CHY041N, 1999 21 Morgan Hill (Cal), CYC195, 1984 
6 Coalinga (California), D-TSM360, 1983 22 N. Palm Springs (Cal), NPS300, 1986 
7 Duzce (Turkey), DZC270, 1999 23 Parkfield (California), C02065, 1966 
8 Edgecumbe (New Zealand), N07W, 1987 24 Parkfield (California), 90, 2004 
9 El Salvador, LONG, 2001 25 San Fernando (California), S16E, 1971 
10 Erzincan (Turkey), N279, 1992 26 South Iceland, LONG, 2000 
11 Friuli (Italy), E-W, 1976 27 Spitak (Armenia), GUK000, 1988 
12 Gazli (Uzbekistan), E-W, 1976 28 Superstitn Hills (Cal), B-SUP135, 1987 
13 Imperial Valley (Cal), H-BCR230, 1979 29 Tabas (Iran), N74E, 1978 
14 Irpinia (Italy), A-STU270, 1980 30 Tabas (Iran), TAB-LN, 1978 
15 Kobe (Japan), N35W, 1995 31 Trinidad, B-RDE000, 1980 
16 Kocaeli (Turkey), ATS000, 1999 32 Victoria (Mexico), CPE045, 1980 
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     To evaluate the extent of these errors, a numerical investigation was carried 
out. By referring to the earthquakes listed in Table 1, the value of the ratio r  as 
defined by eqn (10) was computed for elastic-plastic oscillators possessing 
different realistic values of ay and a damping ratio . The latter is a typical 
value for damping ratio when stress is at the yield point, cf. Chopra [15]. For 
each earthquake and for each value of ,ya  different values of natural period, 

ranging from zero to ,T  were considered.  

     For each value of T , the mean value of the ratio r , say rM , was finally 

obtained. The resulting diagram is presented in Figure 5. It shows that, whatever 
the yield acceleration and whatever the natural period T  of the elastic-plastic 
oscillator, the rigid-plastic method does on average provide a conservative 
estimate of the displacement ductility factor (values of rM  larger than one). In 

particular, the mean relative errors are generally lower than 30%. They are very 
low for 0.2T s  and always lower than 15% for 0.75T s . 
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Figure 5: Mean ratio of predicted to calculated maximum displacements for 
different values of ay (=10%). 

4 Evaluating the rigid-plastic method 

Most of the approximate methods proposed in current literature estimate the 
earthquake ductility demand   by means of parameters that are function of    

itself. As a consequence, they usually require iteration procedures which may 
also imply convergence problems, cf. e.g. Chopra and Goel [16]; Miranda and 
Akkar [17]. An in-depth evaluation of the accuracy of some of these methods 
was done by Miranda and Ruiz Garcia [18] and by Akkar and Miranda [19]. 
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     On the contrary, the rigid-plastic method does not involve any iteration 
procedure. Should the rigid-plastic pseudo-spectrum and the elastic response 
spectrum of the considered earthquake be available, the method predicts the 
inelastic displacement demand on any elastic-plastic oscillator by means of a 
direct procedure, see Section 2.  
     What is more, the rigid-plastic method spots the range of periods in which the 
inelastic demand prediction actually needs to be obtained under a given 
earthquake. This range is always given by 0 T T  . The actual value of 

,T which is different for different earthquakes and for different values of ya  and 

 may be easily obtained from the elastic response spectrum of the considered 

earthquake, see Figure 2. General as it is, this result could be adopted by any 
approximate method that aims at estimating the earthquake ductility demand on 
elastic-plastic oscillators. 
     Within the above range, the rigid-plastic method gives a good estimate of the 
peak plastic displacement of comparatively short-period oscillators (say 

0.25T s ) and comparatively long-period oscillators ( 0.75T s ), see Figure 5. 
On the contrary, high errors are generally encountered in the short period range 
when other approximate methods are adopted, as can be inferred from the 
diagrams presented by Miranda and Ruiz Garcia [18] and by Akkar and Miranda 
[19]. For 0.75T s  the rigid-plastic method prediction is on average comparable 
with that of other approximate methods (cf. e.g. the results presented by Miranda 
and Ruiz Garcia [18] and by Akkar and Miranda [19]). 
     In the medium period range the rigid-plastic prediction may be, however, less 
satisfactory. Here the empirical formula (7) plays a fundamental part for the 
rigid-plastic prediction. Most of the mean errors found in the range 
0.25s 0.75T s   (see Figure 5) can be actually put down to the appliance of 
such a formula. It should be noted that in the same range of periods some other 
approximate methods might give a better prediction on average (cf. Miranda and 
Ruiz Garcia [18]; Akkar and Miranda [19]). This could denote the need for an 
improvement of formula (7). 
     The following points should be noted, though. The mean ratio rM  plotted in 

Figure 5 is relevant to assigned values of ya , which may entail very high values 

of in the short-medium period range ( 10  , as Figure 4 shows. This means 

that the rigid-plastic method is able to estimate very high values of with 
reasonably narrow mean errors. On the contrary, rather low values of are 
usually assigned when evaluating the mean errors relevant to other approximate 
methods (for example  ranging from 2 to 6 is considered by Miranda and Ruiz 
Garcia [18]). In addition, the errors relevant to these methods generally increase 
as increases, this being especially so in the medium period range (cf. Miranda 
and Ruiz Garcia [18]; Akkar and Miranda [19]). This means that also in the 
medium period range the rigid-plastic prediction can in fact be good enough, 
even when compared to that obtained by means of other approximate methods.  
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5 Conclusions 

With the aim of evaluating the extent of the relative errors that can be made 
when the maximum seismic displacement of an elastic-plastic oscillator is 
estimated by means of the rigid-plastic method, a numerical investigation was 
carried out in the present paper. The results show that this method leads -on 
average- to conservative and fairly good predictions, whatever the oscillator and 
the earthquake, and even when the plastic displacements are very large. Mean 
relative errors lower than 15% are found both for short-period and long-period 
oscillators. For medium period oscillator the error is generally less than 30%. A 
profitable feature of the method is that of obtaining the ductility demand 
prediction directly in the range of periods where inelastic displacements may 
actually occur under a given earthquake. Moreover, the rigid-plastic prediction 
does not involve any iterative procedure, as many other approximate methods do. 
For short-period oscillators the mean error is generally much lower than that 
relevant to most of the other approximate methods. For medium-period and long-
period oscillators, a comparable mean error may be found with respect to other 
methods. Especially as the ductility demand increases. 
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