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Abstract 

This paper proposes a moment formulation model to handle eccentric load 
imperfections in beams on elastic foundation taking into consideration the 
randomness of imperfections.  An alternative approach to the secant formula to 
capture the effects of load imperfections is described. The study demonstrates 
eccentricity is the most detrimental form of structural imperfections and that it 
aggressively and adversely interacts with other imperfections. 
Keywords: stability, load imperfections, beam on elastic foundation, regular 
perturbation, eigenvalue, energy method, stochastic, spectral representation. 

1 Introduction 

One fundamental problem still remains to be explored in structural engineering 
are the stability of imperfection sensitive structures. Unlike tension and flexural 
members that fail when the applied loads cause stresses that exceed material 
limitations, slender columns most often fail by buckling.  Furthermore, column 
buckling does not depend on the proportional limit of the member.  Buckling is a 
complex failure mechanism that is often catastrophic with little or no warning.  It 
depends not only on the material and section properties of the column, but also 
on the contributions and interactions of its length, end support conditions, lateral 
supports, and location of the applied load.  
     The classical stability analysis [5, 7], is actually developed largely from the 
work of Leonhard Euler who first analytically investigated the column buckling 
phenomenon in 1744. Over the years, much has been done to extend and refine 
Euler’s work. Buckling formulations based on the Euler equation had some 
rational consideration for the behavior of the material in question.  They all 
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perform empirically well for ideal columns with concentric loads, and models 
that are not unusually sensitive to imperfections. However, imperfections exist 
and are common in real structures. In this study, the authors define structural 
imperfections as any small, unavoidable deviations from the perfect structure.  
These deviations include those of shape (i.e., initial curvature), material 
properties, section properties, support mechanisms, and the geometric 
configuration of the applied load such as accidental eccentricity.  
     While not all structures are sensitive to imperfections, experience and 
experimentation have shown that some structures including the beam on elastic 
foundation and cylindrical shells are quite sensitive to structural imperfections 
[8].  One way to address imperfections is to design structures by increasing 
factors of safety. For the most part, engineers approach imperfections by using 
some rational means to determine the stresses in a column that are caused by the 
imperfection, and then checking this against the Euler load, possibly with an 
added safety factor. In an attempt to more accurately analyze the effect of shape 
imperfections, the secant formula is used to capture the effects of the 
imperfection [6]. While the secant formula will give good results for the stresses 
in a column with imperfections, it is not a buckling formula. It is a strength 
formula. The formula gives an excellent estimate of the stress in the column, but 
it does not and can not predict whether or not the column has survived up to the 
classical buckling load, nor does it say anything about imperfection sensitivity. 
     However, if a structure is sensitive to imperfections, an unstable equilibrium 
exists at the critical load, and it is possible for neighboring equilibria to exist at 
loads less than the critical load. The structure may experience structural 
“softening” as it nears the critical load and consequently less load is required to 
produce more deflection [1]. Examples of structures that are sensitive to 
structural imperfections are thin shells, space frames, thin-walled beams, arches, 
and laterally supported columns such as the beam on elastic foundation (BEF). 
This paper considers eccentricities in the applied loads in BEF.  

2 Numerical method 

Introduced first by Palassopoulos [3], the Critical Imperfection Magnitude 
Method (CIM) is a robust regular perturbation method that addresses limitations 
of Koiter’s method [2]. CIM considers all types of imperfections and not just 
shape imperfections. Yeigh [9] provided a stochastic interpretation of the 
method. CIM takes the potential energy to the second-order expansion and 
kinematically admissible set of generalized coordinates to the fourth-order 
expansion. The general method is outlined in Palassoupoulos [3], and stochastic 
formulation is presented in Yeigh [9]. The potential energy of the “perfect” 
structure (i.e., no imperfections), V0, is expanded in terms of the generalized 
coordinates qj, where j = 1, 2, ..., M. 

 V0 = v0+a0jqj+b0jkqjqk+ c0jklqjqkql + d0jklmqjqkqlqm + . . . (1) 

     Then the potential energy of the “actual” structure (i.e., with imperfections), 
V is discretized and expanded: 

186  Earthquake Resistant Engineering Structures VIII

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 120, © 2011 WIT Press



 V = V0 + V1 + 2V2 + . . .          (2) 

    V1 = v1 + a1jqj + b1jkqjqk + c1jklqjqkql + . . .          (3) 

    V2 = v2 + a2jqj + b2jkqjqk + c2jklqjqkql +. . .          (4) 

where the coefficients a(.), b(.), c(.) and d(.) are chosen to be symmetric with respect 
to permutation of their indices. The universal imperfection magnitude parameter 
 is a measure of the magnitude of deviation in material and structural properties 
from the perfect structure. In general, any property S can be modeled as S(x) = 
S0[1 + s(x)]  with a mean value of S0 and an imperfection pattern s(x). When  = 
0, the structure is reduced to the perfect structure.  However, the product of the 
imperfection being considered and the critical imperfection magnitude cr must 
be sufficiently small (<0.35) in order for the power series expansion to converge. 
The potential energy can be rewritten in more general form: 

V =  (v0 + v1 + 2v2 + ...) + (a0j + a1j + 2a2j + ...)qj 

+ (bojk + b1jk + 2b2jk + ...)qjqk 

 + (c0jkl + c1jkl + 2c2jkl + ...)qjqkql + ...          (5) 

     The first and second variations offer equilibrium and stability conditions: 

 V = {(a0j + a1j + 2a2j + ... )  

 + 2(b0jk + b1jk + 2b2jk + ... )qk  

 + 3(cojkl + c1jkl + 2c2jkl + ... )qkql                          (6) 

 2V= {2(bojk + b1jk + 2b2jk + ... )  

 + 6(cojkl + c1jkl + 2c2jkl + ... )ql  (7) 

     Then the eigenvalue problem can be formulated: 

                                (8) 

where I and 0 represent identity and zero submatrices.  

                                  (9) 

 

             (10) 
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3 Beam on elastic foundation (BEF) formulation with random 
load imperfections (eccentricity) 

Eccentricity in the applied load can be modeled as a shape imperfection because 
the resulting end moments induce curvature into the beam. The eccentricity 
imperfections 1 and 2 will be modeled as single-value random variables. The 
imperfection patterns are assumed to be one-dimensional, homogenous, 
Gaussian random fields. The cosine series formula [4] will be used to simulate 
random imperfection patterns. The function s(x) represents the imperfection 
pattern which is a 1D-1V, homogeneous, Gaussian stochastic field with a zero 
mean.  In terms of the cosine series with deterministic amplitude An, and a 
random phase angle n, the pattern is written as:  

                                (11) 

                                        (12) 

, n = 1, 2, ..., N                              (13) 

where  is the wave number and u is the fixed upper cut-off wave number. The 
value of u is chosen such that above it, the corresponding one-sided power 
spectral density Gff() is zero or negligibly small. The following power spectral 
density (PSD) function and corresponding autocorrelation function Rff()  are 
used: 

                                  (14)
 

                                        (15) 

     The correlation distance, bfo, is chosen to best match the PSD to the expected 
degree of fluctuation in the imperfections.  Long values of bfo, the PSD undulates 
slowly.  Short values of bfo, the PSD varies sharply. The correlation distance 
used in this study is 1.50, a reasonable and realistic choice that reflects an actual 
beam with imperfections.  
     BEF with imperfections in initial shape, bending rigidity, foundation stiffness, 
load and eccentric end loads were considered in this study. The beam also has a 
depth, de.  The variable de does not explicitly enter the potential energy 
formulation. However, in order to model the distribution of the end 
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eccentricities, the depth must be physically defined.  This can be achieved by 
relating de to length, L by means of a span-to-depth ratio.  For this study, a 
commonly used engineering span-to-depth ratio of 20 is used. 
     For generality, non-dimensional variables were used throughout. For this 
problem, the most convenient approach to a non-dimensional form is to divide 
the length variables by the modified span length, LP=L/.   

 , ,  (16) 

 
, , ,  (17) 

     Imperfections in bending rigidity (EI), foundation stiffness (K), load (P), and 
eccentricity (Z) are described as zero mean stochastic fields: 

 EI(x) = (EI)0[1 + e(x)], (x) = 0[1+ k(x)], w0 = h(x)  (18) 

 z1 = 1, z2 = 2, K(x) = K0[1 + k(x)] (19) 

                                     (20) 

     The functions e(x), k(x), and h(x) are the imperfection patterns (stochastic 
fields) for the beam to be used on the bending rigidity, foundation stiffness, and 
initial shape respectively. The terms 1 and 2 are independent random variables.  
For the case of a Gaussian distribution,  is distributed normally with zero mean 
and standard deviation . For physical reasons, the distributions for  are 
truncated at the top and bottom edges of the beam. It is desired to have positively 
defined end moments M1 and M2 in the formulation of VM.  In order for M1 to be 
positive, Z1 must be negative.  (M1 = -PZ1) The reverse is true for M2. Here, a 
positive Z2 gives a positive M2.  (M2 = PZ2) 
     There are four contributing components to the potential energy of the BEF: 
the strain energy of bending due to change in curvature (VB), the strain energy of 
the foundation (VK), the potential energy of the applied load (VP), and the 
potential energy of the moments resulting from the accidental eccentricities 
(VM): V = VB + VK + VP + VM. Before proceeding with the development of the 
coefficients in the characteristic equation, the spectral representations for e(x), 
k(x), and h(x) must be developed.  

            (21)

 
     A direct representation for h(x) similar to eqn. (21) is not possible.  The 
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rotating and translating the field to meet the required boundary conditions.  This 
fitting procedure is described as follows: 

          (22) 

and, realizing that h*(0) = h*() = 0,  and   

where       (23) 

4 Numerical results 

The solution of the eigenvalue problem for the ith sample imperfection pattern 
yields the critical imperfection magnitude.  For each imperfection parameter, the 
root mean square (rms) magnitude was then combined with the critical 

imperfection magnitude,  to yield the rms imperfection magnitudes, , 

, , and : 

and     (24) 

where ] is e, k, or h* and i = 1, 2, …, M.  The product of the imperfection 
magnitude cr and RMS imperfection patterns should not be greater than 0.35 
since it violates the nature of the perturbation approximation and are physically 
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Power spectral density function:  
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Figure 1: Direct comparison of e, k, and h. 

 

Figure 2: Effects of eccentricity on RMS with other imperfections. 

imperfection. Shape imperfections become more and more dominant as the 
correlation distance decreases [9].   
     The effects on eccentricity imperfection sensitivity will be most pronounced 
when it is modeled as a random variable, as it is in this case.  Thus, the model 
used in this study maximizes the dominance of the eccentricity imperfection; 
while holding the dominance of shape imperfections back to an average. 
Eccentricity is indeed a shape imperfection.  The RMS for  are similar in shape, 
orientation (i.e., concave up), and location as those for h.  This result was 
expected, given that the entry point of the s into the characteristic equation was 
in the a1j term.  
     Figures 3 and 4 show, in the case of RMS for  there is a remarkable 
twentyfold increase in sensitivity when shape imperfections are present.  In the 
case of h, when eccentric loads are present, the sensitivity is increased even 
more, by about 50 times.  It is also obvious from these plots that any detrimental 
effects from the addition of e and k imperfections are so minor as to be almost 
inconsequential in the face of the overwhelming dominance of the two shape 
imperfections working in conjunction.   
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Figure 3: Effects of initial shape imperfections on eccentricity. 

 

 

Figure 4: Effects of eccentricity on initial shape imperfections. 

5 Conclusions 

Eccentricity in the applied load is the most dominant of all imperfections for a 
correlation distance of 1.50. Also, the buckling sensitivity of the BEF to all other 
imperfections is extremely degraded in the presence of eccentricity in the applied 
loads.  This is especially true in the case of imperfections in the initial shape of 
the beam.  This study also proved that eccentricity in the applied load is in fact a 
shape imperfection. Furthermore, this study concluded that the buckling 
sensitivity of the beam did not depend on the sign of the product of the 
eccentricities on each end of the beam. 
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