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Abstract 

In this paper, a boundary element method is developed for the nonlinear dynamic 
analysis of piles of arbitrary doubly symmetric simply or multiply connected 
constant cross section, partially embedded in viscoelastic foundations, 
undergoing moderate large deflections under general boundary conditions, taking 
into account the effects of shear deformation and rotary inertia. The pile is 
subjected to the combined action of arbitrarily distributed or concentrated 
transverse loading and bending moments in both directions as well as to axial 
loading. To account for shear deformations, the concept of shear deformation 
coefficients is used. Five boundary value problems are formulated with respect 
to the transverse displacements, to the axial displacement and to two stress 
functions and solved using the Analog Equation Method, a BEM based method. 
Application of the boundary element technique yields a nonlinear coupled 
system of equations of motion. The solution of this system is accomplished 
iteratively by employing the average acceleration method in combination with 
the modified Newton Raphson method. The evaluation of the shear deformation 
coefficients is accomplished from the aforementioned stress functions using only 
boundary integration. The proposed model takes into account the coupling 
effects of bending and shear deformations along the member as well as the shear 
forces along the span induced by the applied axial loading. Numerical examples 
are worked out to illustrate the efficiency, wherever possible the accuracy and 
the range of applications of the developed method. 
Keywords: piles, nonlinear vibrations, large deflections, Timoshenko beam, 
shear deformation coefficients, boundary element method, viscoelastic 
foundation. 
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1 Introduction 

Many problems related to soil-structure interaction can be modelled by means of 
a beam or a beam-column on an elastic foundation. Practical examples of these 
are railroad tracks, highway pavements, continuously supported pipelines, and 
strip foundations. Moreover, piles are frequently employed for the foundation of 
structures such as buildings, quay walls, bridges and offshore structures. These 
piles, which are subjected to lateral forces that result from loading on supported 
structures, during earthquake excitation, develop a nonlinear dynamic response. 
Thus, the study of nonlinear effects on the dynamic analysis of structural 
elements is essential in civil engineering applications, wherein weight saving is 
of paramount importance. This non-linearity results from retaining the square of 
the slope in the strain–displacement relations (intermediate non-linear theory), 
avoiding  in  this  way the inaccuracies arising from a linearized second-order 
analysis. Thus, the aforementioned study takes into account the influence of the 
action of axial, lateral forces and end moments on the deformed shape of the 
structural element. Moreover, due to the intensive use of materials having 
relatively high transverse shear modulus and the need for beam members with 
high natural frequencies the error incurred from the ignorance of the effect of 
shear deformation may be substantial, particularly in the case of heavy lateral 
loading. The Timoshenko-Rayleigh beam theory, which includes shear 
deformation and rotary inertia effects has an extended range of applications as it 
allows treatment of deep beam (depth is large relative to length), short and thin-
webbed beams and beams where higher modes are excited. 
     When the beam-column deflections of the structure are small, a wide range of 
linear analysis tools, such as modal analysis, can be used, and some analytical 
results are possible. During the past few years, the linear dynamic analysis of 
beams on elastic foundation has received a good amount of attention in the 
literature with pioneer the work of Hetenyi [1] who studied the elementary 
Bernoulli-Euler beams on elastic Winkler foundation. Rades [2] presented the 
steady-state response of a finite rigid beam resting on a foundation defined by 
one inertial and three elastic parameters in the assumption of a permanent and 
smooth contact between beam and foundation considering only uncoupled 
modes. Wang and Stephens [3] studied the natural vibrations of a Timoshenko 
beam on a Pasternak-type foundation showing the effects of rotary inertia, shear 
deformation and foundation constants of the beam employing general analytic 
solutions for simple cases of boundary conditions. De Rosa [4] and El-Mously 
[5] derived explicit formulae for the fundamental natural frequencies of finite 
Timoshenko-beams mounted on finite Pasternak foundation.  
     Moreover, El Naggar and Novak [6] studied the lateral response of singe piles 
and pile groups accounting the nonlinear behaviour of the soil adjacent to the 
pile and discontinuity conditions at the pile-soil interface. Padron et. al. [7] 
studied a BEM–FEM coupling model for the time harmonic dynamic analysis of 
piles and pile groups embedded in an elastic half-space where piles are modelled 
using finite elements as a beam according to the Bernoulli hypothesis, while the 
soil is modelled using boundary elements as a continuum, semi-infinite, 
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isotropic, homogeneous or zoned homogeneous, linear, viscoelastic medium. Hu 
et al. [8] presented the nonlinear partial differential equation governing the 
nonlinear transverse vibration of pile under the assumption that both the 
materials of the pile and the soil obey nonlinear elastic and linear viscoelastic 
constitutive relations while the frequency and the response of the system have 
been obtained by the complex mode method and the method of multiple time 
scales. 
     As the deflections become larger, the induced geometric nonlinearities result 
in effects that are not observed in linear systems. Contrary to the good amount of 
attention in the literature concerning the linear dynamic analysis of beam-
columns supported on elastic foundation, little work has been done on the 
corresponding nonlinear problem, such as the nonlinear free vibration analysis of 
multispan beams on elastic supports presented by Lewandowski [9], employing 
the dynamic finite element method, neglecting the horizontally and rotary inertia 
forces and considering the beams as distributed mass systems. 
     In this paper, a boundary element method is developed for the nonlinear 
dynamic analysis of piles of arbitrary doubly symmetric simply or multiply 
connected constant cross section, partially embedded in viscoelastic foundation, 
undergoing moderate large deflections under general boundary conditions, taking 
into account the effects of shear deformation and rotary inertia. The pile is 
subjected to the combined action of arbitrarily distributed or concentrated 
transverse loading and bending moments in both directions as well as to axial 
loading. To account for shear deformations, the concept of shear deformation 
coefficients is used. Five boundary value problems are formulated with respect 
to the transverse displacements, to the axial displacement and to two stress 
functions and solved using the Analog Equation Method [10], a BEM based 
method. Application of the boundary element technique yields a nonlinear 
coupled system of equations of motion. The solution of this system is 
accomplished iteratively by employing the average acceleration method in 
combination with the modified Newton Raphson method [11, 12]. The 
evaluation of the shear deformation coefficients is accomplished from the 
aforementioned stress functions using only boundary integration. The essential 
features and novel aspects of the present formulation compared with previous 
ones are summarized as follows. 
i. Shear deformation effect and rotary inertia are taken into account on the 

nonlinear dynamic analysis of piles subjected to arbitrary loading 
(distributed or concentrated transverse loading and bending moments in both 
directions, as well as axial loading). 

ii. The homogeneous linear half-space is approximated by a viscoelastic 
foundation.  

iii. The pile is supported by the most general nonlinear boundary conditions 
including elastic support or restrain, while its cross section is an arbitrary 
doubly symmetric one. 

iv. The proposed model takes into account the coupling effects of bending and 
shear deformations along the member as well as shear forces along the span 
induced by the applied axial loading. 
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v. The shear deformation coefficients are evaluated using an energy approach, 
instead of Timoshenko and Goodier’s [13] and Cowper’s [14]. 

vi. The effect of the material’s Poisson ratio ν is taken into account. 
vii. The proposed method employs a BEM approach (requiring boundary 

discretization) resulting in line or parabolic elements instead of area 
elements of the FEM solutions (requiring the whole cross section to be 
discretized into triangular or quadrilateral area elements), while a small 
number of line elements are required to achieve high accuracy. 

2 Statement of the problem 

Let us consider a prismatic pile of length l , of constant arbitrary doubly 
symmetric cross-section of area A . The homogeneous isotropic and linearly 
elastic material of the pile cross-section, with modulus of elasticity E , shear 
modulus G  and Poisson’s ratio v  occupies the two dimensional multiply 

connected region   of the y,z  plane and is bounded by the  j j 1,2,...,K   

boundary curves, which are piecewise smooth, i.e. they may have a finite 
number of corners. Consider Cyz  to be the principal bending coordinate system 

through the cross section’s centroid. The pile is partially embedded in a 
homogeneous viscoelastic soil. The foundation model is characterized by the 
Winkler moduli yk , zk  and the damping coefficients yc , zc  corresponding to 

the directions y, z respectively. Thus, the foundation reaction is written as 

      
sy y y

v x,t
p x,t k v x,t c

t


 


 (1) 

      
sz z z

w x,t
p x,t k w x,t c

t


 


 (2) 

     The pile is subjected to the combined action of the arbitrarily distributed or 
concentrated time dependent axial loading  x xp p x,t , transverse loading 

 y yp p x,t ,  z zp p x,t  acting in the y , z  directions, respectively and 

bending moments  y ym m x,t ,  z zm m x,t  along y , z  axes, respectively. 

     Under the action of the aforementioned loading, the displacement field of the 
pile taking into account shear deformation effect is given as 

        z yu x, y,z,t u x,t y x,t z x,t     (3) 

    v x,t v x,t  (4) 

    w x,t w x,t  (5) 

where u , v , w  are the axial and transverse pile displacement components with 

respect to the Cyz  system of axes;  u x,t ,  v x,t ,  w x,t  are the 
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corresponding components of the centroid C  and  y x,t ,  z x,t  are the 

angles of rotation due to bending of the cross-section with respect to its centroid.  
     Employing the strain-displacement relations of the three-dimensional 
elasticity for moderate displacements, the following strain components can be 
easily obtained 

 
2 2

xx
u 1 v w

x 2 x x


                    
 (6) 

 xz
w u v v w w

x z x z x z
                 

 (7) 

 xy
v u v v w w

x y x y x y


      
          

 (8) 

 yy zz yz 0      (9) 

where it has been assumed that for moderate displacements  2u u
x x

   , 

      u u u u
x z x z

        ,       u u u u
x y x y

        . 

Substituting the displacement components to the strain-displacement relations, 
the strain components can be written as 

    2 2
xx y z

1
x, y,z,t u z y v w

2
           (10) 

 xy zv    (11) 

 xz yw    (12) 

where xy , xz  are the additional angles of rotation of the cross-section due to 

shear deformation . 
     Considering strains to be small, employing the second Piola – Kirchhoff 
stress tensor and assuming an isotropic and homogeneous material, the stress 
components are defined in terms of the displacement ones as 

  2 2
xx y z

1
S E u z y v w

2
           

 (13) 

  xy zS G v     (14) 

  xz yS G w     (15) 

     On the basis of Hamilton’s principle, the variations of the Lagrangian 
equation defined as 

  2

1

0
t

extt
U K W dt     (16) 

Earthquake Resistant Engineering Structures VIII  155

 
 www.witpress.com, ISSN 1743-3509 (on-line) 
WIT Transactions on The Built Environment, Vol 120, © 2011 WIT Press



and expressed as a function of the stress resultants acting on the cross section of 
the pile in the deformed state provide the governing equations and the boundary 
conditions of the pile subjected to nonlinear vibrations. In eqn. (16),     

denotes variation of quantities while U , K , extW  are the strain energy, the 

kinetic energy and the external load work. Moreover, the stress resultants of the 
pile using the expressions of the stress components are given as 

  2 21
N EA u v w

2
       

 (17) 

 y y yM EI    (18) 

 z z zM EI    (19) 

 y y xyQ GA   (20) 

 z z xzQ GA   (21) 

where A  is the cross section area, yI , zI  the moments of inertia with respect to 

the principle bending axes and yGA , zGA  are its shear rigidities of the 

Timoshenko’s beam theory, where 

 z z
z

1
A A A

a
   y y

y

1
A A A

a
   (22) 

are the shear areas with respect to y , z  axes, respectively with y , z  the 

shear correction factors and ya , za  the shear deformation coefficients. 

Substituting the stress components and the strain resultants to the strain energy 
variation and employing eqn. (16), the equilibrium equations of the pile are 
derived as 

   xEA u w w v v u p          (23) 

 

   

 

2
z

z sy sy y2
y

22
z

z sy y y z2 2
y

EI v
EI v v p Nv A p " p " Nv

GA x

NvIv
I A v p p p m

GAx t

 


 

             
          
   



   
 (24) 

 

   

 

2
y

y sz sz z2
z

22
y

z sz z z y2 2
z

EI w
EI w"" w p Nw' A p " p " Nw'

GA x

I Nw'w
I Aw p p p m

GAx t

 


 

           
          
   



   
 (25) 
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     Eqns. (23)-(25) constitute the governing differential equations of a 
Timoshenko-Rayleigh pile, partially embedded in viscoelastic foundation, 
subjected to nonlinear vibrations due to the combined action of time dependent 
axial and transverse loading. These equations are also subjected to the pertinent 
boundary conditions of the problem, which are given as 

    1 2 3a u x,t N x,t    (26) 

    1 2 y 3v x,t V x,t   
    

   1 z 2 z 3x,t x,t       (27) 

    1 2 z 3w x,t V x,t   
        1 y 2 y 3x,t x,t       (28) 

 

at the pile ends x 0,l , together with the initial conditions 
 

    0u x,0 u x        0u x,0 u x   (29) 

    0v x,0 v x         0v x,0 v x   (30) 

    0w x,0 w x        0w x,0 w x   (31) 

 

where  0u x ,  0v x ,  0w x ,  0u x ,  0v x  and  0w x  are prescribed 

functions. In eqns. (27), (28) yV , zV , zM , yM  and y , z  are the reactions, 

the bending moments and the angles of rotation due to bending with respect to y, 
z , respectively. 
     Finally, k k k k k, , , ,      ( k 1,2,3 ) are functions specified at the pile ends 

x 0,l . Eqs. (26)-(28) describe the most general nonlinear boundary conditions 
associated with the problem at hand and can include elastic support or restraint. 
It is apparent that all types of the conventional boundary conditions (clamped, 
simply supported, free or guided edge) can be derived from these equations by 
specifying appropriately these functions (e.g. for a clamped edge it is 2  3 

2  3  2  3  2  3  2  3 0  , 1 1 1 1     , 1 1 1   ). 

     The solution of the initial boundary value problem given from eqns. (23)-
(25), subjected to the boundary conditions (26)-(28) and the initial conditions 
(29)-(31) which represents the nonlinear flexural dynamic analysis of a 
Timoshenko-Rayleigh pile, partially embedded in viscoelastic foundation, 
presumes the evaluation of the shear deformation coefficients ya , za , 

corresponding to the principal coordinate system Cyz . These coefficients are 

established equating the approximate formula of the shear strain energy per unit 
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length [15] 
2 2

y y z z
appr.

a Q a Q
U

2AG 2AG
   with the exact one given from

   22
xz xy

exactU d
2G

 



   and are obtained as [16] 

    y 2
y

1 A
a d   

 
            e e  (32) 

    z 2
z

1 A
a d   

 
            d d  (33) 

 

where    xz xyj j
,   are the transverse (direct) shear stress components, 

     y z     y zi i  is a symbolic vector with ,y zi i  the unit vectors 

along y  and z  axes, respectively. Moreover,   y z2 1 Ι Ι    where   is the 

Poisson ratio of the cross section material, 
2 2

y y
y z

I I yz
2

 
 

   
 

y ze i i  and 

2 2

z z
y z

I yz I
2

 
 

   
 

y zd i i  while  y,z  and  y,z  are stress functions 

which are evaluated from the solution of the following Neumann type boundary 
value problems [16] 
 

 2
y2I y      in   (34) 

 
n


 


n e  on 

K 1

j
j 1

 



   (35) 

 2
z2I z       in   (36) 

 
n


 


n d  on 

K 1

j
j 1

 



   (37) 

 

where n  is the outward normal vector to the boundary  . In the case of 
negligible shear deformations z ya a 0  . It is also worth here noting that the 

boundary conditions (37), (39) have been derived from the physical 
consideration that the traction vector in the direction of the normal vector n  
vanishes on the free surface of the pile. 
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3 Integral representations  numerical solution 

According to the precedent analysis, the nonlinear flexural dynamic analysis of 
Timoshenko-Rayleigh pile, partially embedded in viscoelastic foundation, 
undergoing moderate large deflections reduces in establishing the displacement 
components  u x,t  and  v x,t ,  w x,t  having continuous derivatives up to the 

second order and up to the fourth order with respect to x , respectively, and also 
having derivatives up to the second order with respect to t (ignoring the inertia 
terms of the fourth order [17]). These displacement components must satisfy the 
coupled governing differential eqns. (23)-(25) inside the pile, the boundary 
conditions (26)-(28) at the pile ends x 0,l  and the initial conditions (29)-(31). 
Eqns. (23)-(25) are solved using the Analog Equation Method [10] as it is 
developed for hyperbolic differential equations [18]. 

4 Numerical examples 

On the basis of the analytical and numerical procedures presented, a computer 
program has been written and a representative example has been studied to 
demonstrate the efficiency of the developed method. In this example, the results 
have been obtained using L 41  nodal points along the pile and a time step of 

t 1.0 sec   . 

4.1 Example  

A partially embedded pile of total length l 10m  ( freel 3.0m , embedl 7m ), 

of circular cross section of diameter D 0.5m  ( E 29GPa , v 0.2 , 
2A 0.196m , 3 4

y zI I 3.066 10 m   ) is studied. The foundation model is 

characterized by the Winkler modulus 2k 17.4MN / m  and the damping 

coefficient 2c 12kNs / m . According to its boundary conditions, the embedded 
pile end is free, while the other end is free according to its displacements and 
blocked according to its rotations. The pile is subjected to a concentrated 
compressive axial load xP 0,t ) 1500kN  ,  t 0.0  and to a concentrated 

transverse force  zP 0,t 1000kN ,  t 0.0  acting at its top. 

     In fig. 1 the time histories of the head displacement  topw 0,t  of the pile 

embedded in a viscoelastic foundation are presented taking into account the 
rotary inertia and the shear deformation effect, for two values of the damping 

coefficient ( 2c 0kNs / m , 2c 12kNs / m ) and performing either a linear or a 
nonlinear analysis. Moreover, in table 1 the maximum values of the head 

displacement  top max
w  and the periods zT  of the first-cycle of motion are 

presented for the aforementioned viscous cases of analysis.  
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Figure 1: Time history of the transverse displacement  topw 0,t  of the pile 

head. 

Table 1:  Maximum head displacement  2
top

max
w 10 m and period 

 2
zT 10 sec

 
of the first cycle of motion of the pile. 

Nonlinear Analysis Linear Analysis 

 top max
w  zT    top max

w  zT   

29.662 8.10 26.956 7.28 

 
     Finally, in order to demonstrate the coupling effect of the transverse 
displacements in both directions in the nonlinear analysis, as a variant of the 
above application, the examined pile additionally to the already described 
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loading is also subjected to a concentrated transverse force  yP 0,t 2000kN , 

acting also at its top. In table 2 the maximum values of the head transverse 

displacements  top max
w ,  top max

v  are presented performing either a linear or 

a nonlinear analysis. The difference in the elements of the first columns of tables 
1, 2 is due to the coupling effect of the transverse displacements.  

Table 2:  Maximum head transverse displacements  top max
w ,  top max

v

 210 m of the pile. 

Nonlinear Analysis Linear Analysis 

 top max
w   top max

v   top max
w   top max

v  

29.671 59.343 26.956 53.912 

5 Concluding remarks 

The main conclusions that can be drawn from this investigation are  
a. The numerical technique presented in this investigation is well suited for 

computer aided analysis for piles of arbitrary simply or multiply 
connected doubly symmetric cross section.  

b. The proposed method is developed for general dynamic analysis, while 
the pile is subjected to the most general boundary conditions and is 
embedded in viscoelastic foundation. 

c. In some cases, the effect of shear deformation is significant, increasing 
the transverse displacements and decreasing the bending moments in both 
linear and nonlinear analysis.  

d. The discrepancy between the results of the linear and the nonlinear 
analysis is remarkable. 

e. The damping coefficient is of paramount importance for piles in 
viscoelastic foundations, as it reduces the vibration amplitude and the 
consequences of the dynamic response. 
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