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Abstract 

In this paper a general solution for the dynamic analysis of shear deformable 
stiffened plates subjected to arbitrary loading is presented. According to the 
proposed model, the stiffening beams are isolated from the plate by sections in 
the lower outer surface of the plate, taking into account the arising tractions in all 
directions at the fictitious interfaces. These tractions are integrated with respect 
to each half of the interface width resulting two interface lines, along which the 
loading of the beams as well as the additional loading of the plate is defined. 
Their unknown distribution is established by applying continuity conditions in 
all directions at the interfaces. The utilization of two interface lines for each 
beam enables the nonuniform distribution of the interface transverse shear forces 
and the nonuniform torsional response of the beams to be taken into account. 
The analysis of both the plate and the beams is accomplished on their deformed 
shape taking into account second-order effects. The analysis of the plate is based 
on Reissner’s theory, while the analysis of the beams is based on Timoshenko’s 
beam theory. Six boundary value problems are formulated and solved using the 
Analog Equation Method (AEM), a BEM based method. 
Keywords: ribbed plate, Reissner’s theory, Timoshenko’s beam theory, dynamic 
analysis, boundary element method. 

1 Introduction 

Structural plate systems stiffened by beams are widely used in buildings, bridges, 
ships, aircrafts and machines. Moreover, for cases wherein the plate or the beams 
are not very “thin” or the stiffeners are closely spaced, the error incurred from 
the ignorance of the effect of shear deformation may be substantial, while the 
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accuracy of a classical analysis decreases and the truthfulness of the results is 
lost with growing plate or beam thickness. The extensive use of the 
aforementioned plate structures necessitates a rigorous analysis. The behaviour 
of stiffened plates has been widely studied employing the finite element method 
[1,2], the boundary element method [3,4,5] or a combination of these methods 
[6]. In all these approximations the solution of the bending problem of stiffened 
plates is not general since either the analysis of the plate and the beams is 
performed on the undeformed shape ignoring second-order effects or the shear 
longitudinal or transverse forces at the interfaces have been neglected or the 
torsional and warping behaviour of the stiffening beams has been ignored 
excluding in this way the placement of an eccentric stiffener. Only Sapountzakis 
and Mokos in [7] presented a general solution for the dynamic analysis of plates 
stiffened by parallel beams taking into account tractions in all directions at the 
fictitious plate – beams interfaces and enabling the nonuniform distribution of 
the interface transverse shear forces and the nonuniform torsional response of the 
beams to be taken into account. In all of the aforementioned research efforts 
shear deformation effect has been ignored. Contrary to the extended literature 
concerning the analysis of plates reinforced with beams ignoring shear 
deformation effect, relatively little work has been done only on the static analysis 
of shear deformable stiffened plates. The FEM has been employed using shear 
deformation theory [8,9] while the BEM has been used by Wen et al. [10] by 
coupling the shear deformable plate formulation and the two-dimensional plane 
stress elasticity. Also in these latter research efforts the solution of the bending 
problem of stiffened plates is not general for the same reasons mentioned in the 
previous paragraph. To the authors’ knowledge shear deformation effect has not 
yet been taken into account in the dynamic analysis of plates reinforced with 
beams. In this paper a general solution for the dynamic analysis of plates 
stiffened by arbitrarily placed parallel beams of arbitrary doubly symmetric cross 
section subjected to arbitrary dynamic loading is presented taking into account 
shear deformation effect in both the plate and the beams. The employed 
structural model is the one presented by Sapountzakis and Mokos in [7], in 
which the nonuniform distribution of the interface transverse shear forces and the 
nonuniform torsional response of the beams are taken into account. According to 
this model, the stiffening beams are isolated from the plate by sections in the 
lower outer surface of the plate, taking into account the arising tractions in all 
directions at the fictitious interfaces. These tractions are integrated with respect 
to each half of the interface width resulting two interface lines, along which the 
loading of the beams as well as the additional loading of the plate is defined. The 
unknown distribution of the aforementioned integrated tractions is established by 
applying continuity conditions in all directions at the two interface lines. The 
analysis of both the plate and the beams is accomplished on their deformed shape 
taking into account second-order effects. The method of analysis is based on the 
capability to establish a flexibility matrix with respect to a set of nodal mass 
points, while a lumped mass matrix is constructed from the tributary mass areas 
to these mass points. The analysis of the plate is based on Reissner's theory, 
which may be considered as the standard thick plate theory with which all others 
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are compared, while the analysis of the beams is performed employing the 
linearized second order theory taking into account shear deformation effect. Six 
boundary value problems are formulated and solved using the Analog Equation 
Method (AEM) [11], a BEM based method.  

2 Statement of the problem 

Consider a plate of homogeneous, isotropic and linearly elastic material with 
modulus of elasticity E , shear modulus G and Poisson ratio µ , having constant 
thickness ph  and occupying the two-dimensional multiply connected region Ω  
of the ,x y  plane bounded by the piecewise smooth K+1 curves 

0 1 1, ,..., ,K K−Γ Γ Γ Γ , as shown in Fig.1. The plate is stiffened by a set of 
1,2,...,i I=  arbitrarily placed parallel beams of arbitrary doubly symmetric 

cross section of homogeneous, isotropic and linearly elastic material with 
modulus of elasticity i

bE , shear modulus i
bG  and Poisson ratio i

bµ , which may 
have either internal or boundary point supports. For the sake of convenience the 
x  axis is taken parallel to the beams. The stiffened plate is subjected to the 
lateral load ( , )g g t= x , x :{ , }x y , 0t ≥ . For the analysis of the aforementioned 
problem a global coordinate system Oxy  for the analysis of the plate and local 

coordinate ones i i iO x y  corresponding to the centroid axes of each beam are 
employed as shown in Fig.1.  
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Figure 1: Two-dimensional region Ω occupied by the plate. 
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     According to the proposed model, the stiffening beams are isolated from the 
plate by sections in its lower outer surface, taking into account the arising 
tractions at the fictitious interfaces. Integration of these tractions along each half 
of the width of the i-th beam results in line forces per unit length in all directions 
in two interface lines, which are denoted by i

xjq , i
yjq  and i

zjq  ( )1,2j =  
encountering in this way the nonuniform distribution of the interface transverse 
shear forces i

yq . The aforementioned integrated tractions result in the loading of 
the i-th beam as well as the additional loading of the plate. Their distribution is 
unknown and can be established by imposing displacement continuity conditions 
in all directions along the two interface lines, enabling in this way the 
nonuniform torsional response of the beams to be taken into account. 

2.1 Initial boundary value problems 

On the base of the above considerations the response of the plate and the beams 
may be described by the following initial boundary value problems. 

2.1.1 For the plate 
The plate undergoes transverse deflection and inplane deformation. Thus for the 
transverse deflection, according to Reissner’s theory and employing the 
linearized second order theory, the equation of motion can be written as 

( )

2 2 2 2
4 2

2 2

22
2

1 1

22
10 1

2
10 1

p p p p
p p p p p x xy y

i i i iI
p pxj pyj pj pji i i i i

zj zj xj yj j j
i j

w w w h
D w w c w N N N g g

x x y y

h m m w w
q q q q y y

y x x y

∂ ∂ ∂ µρ
∂ ∂ ∂ ∂ µ

∂ ∂ ∂ ∂µ δ
µ ∂ ∂ ∂ ∂= =

  −
∇ + + − + + = − ∇ −   − 
  −

− − ∇ − + − − −    −  
∑ ∑

&& &

 

                                                                                                                    in Ω (1) 
1 2 3p p p pn pw Qα α α+ =                                              (2a) 

1 2 3p pn p pn pMβ φ β β+ =  on Γ                   (2b) 

1 2 3p pt p pnt pMγ φ γ γ+ =                                             (2c) 

( ) ( )0,0p pw w=x x       ( ) ( )0,0p pw w=x x&                          (3a) 

where 3 2/12(1 )pD Eh v= −  is its flexural rigidity; ( ),x xN N t= x , 

( ),y yN N t= x , ( ),xy xyN N t= x  are the membrane forces per unit length of the 

plate cross section; p phρ ρ=  is the surface mass density of the plate with ρ  

being the volume mass density; pc  is the plate flexural damping constant; 

( )iy yδ −  is the Dirac’s delta function in the y direction. Also, pla , plβ , plγ  

( 1,2,3)l =  are given functions specified on the boundary Γ ; ( )0pw x , ( )0pw x  
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are the initial deflection and the initial velocity of the points of the middle 
surface of the plate; pnQ , pnM , pntM  are the shear force, the bending moment 

and the twisting moment along the boundary, respectively and pnφ , ptφ  are the 
average rotations of the plate with respect to the axes t, n, respectively. 
     Since linearized plate bending theory is considered, the components of the 
membrane forces xN , yN , xyN  are given as 

p p
x

u v
N C

x y
∂ ∂

µ
∂ ∂

 
= + 

 
   p p

y

u v
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∂ ∂

µ
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               (4a,b) 
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 
        (4c) 

where ( )2/ 1pC Eh µ= − ; ( ),p pu u x y= , ( ),p pv v x y=  are the displacement 

components of the middle surface of the plate arising from the line body forces 
i
xjq , i

yjq  (i=1,2,…I), (j=1,2). These displacement components are established by 
solving independently the plane stress problem, which is described by the 
following quasi-static (inplane inertia forces are ignored) boundary value 
problem (Navier’s equations of equilibrium) 
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∑ ∑    in Ω   (6) 

1 2 3p pn p n pu Nδ δ δ+ =      1 2 3p pt p t pu Nε ε ε+ =  on Γ            (7a,b) 

in which nN , tN  and pnu , ptu  are the boundary membrane forces and 
displacements in the normal and tangential directions to the boundary, 
respectively; plδ , plε  ( 1,2,3)l =  are functions specified on the boundary Γ . 

2.1.2 For each (i-th) beam 
Each beam undergoes transverse deflection with respect to iz  and iy  axes, axial 

deformation along ix  axis and nonuniform angle of twist along ix  axis.  
     Thus, for the transverse deflection with respect to iz  axis the equation of 
motion employing the linearized second order theory and taking into account 
shear deformation effect can be written as 
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where i
byθ , i

bzR , i
byM  are the slope, the reaction and the bending moment at the 

i-th beam ends, respectively, while i i
b zG A  is the shear rigidity according to 

Timoshenko’s beam theory. Similarly, the ( )i i i
b bv v x=  transverse deflection 

with respect to iy  axis must satisfy the following quasi-static (transverse inertia 

forces with respect to iy  axis are ignored) boundary value problem 
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     The axial deformation i
bu  of the beam is described by solving the following 

quasi-static (axial inertia forces are neglected) boundary value problem 
2 2
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i
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uE A q
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= −∑  in , i 1,2,...,iL I=                                (13) 
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     Finally, the nonuniform angle of twist ( )i i i
bx bx xθ θ=  with respect to ix  shear 

centre axis has to satisfy the following quasi-static (torsional and warping inertia 
moments are ignored) boundary value problem 
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2.2 Displacement continuity conditions 

The displacement continuity conditions in the directions of iz , ix  and iy  local 
axes along the two interface lines of each (i-th) plate – beam interface can be 
expressed as 
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where ( )iP
S fj
φ  is the value of the primary warping function of the beam cross 

section at the point of the j-th interface line of the i-th plate – beam interface f . 

3 Solution procedure 

The numerical solution of the aforementioned problem is achieved employing 
the method presented by Katsikadelis and Kandilas [12]. According to this 
method the domain Ω occupied by the plate is discretized by establishing a 
system of M nodal points on it, corresponding to M mass cells, to which masses 
are assigned according to the lumped mass assumption. Subsequently, the 
stiffness matrix, the damping matrix as well as the load vector with respect to 
these nodal points are established employing the Analog Equation Method 
(AEM) [11], a BEM based method. This procedure leads to the typical equation 
of motion for the stiffened plate 

[ ]{ } [ ]{ } [ ]{ } { }m w c w k w g+ + =&& &                               (20) 

4 Numerical example 

A concrete C20 25  rectangular plate with dimensions 18.0 9.0 m×  subjected to 

a uniformly distributed trapezoidal load ( )g t  and stiffened by two concrete 
C20 25  rectangular beams of 1.0 m  width placed at its free sides (Figure 2) has 
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been studied (damping ratio i
b 0ξ ξ= = ). The plate is clamped along its small 

edges, while the other two edges are free.  In Table 1 the first five eigenperiods 
of the free vibrating stiffened plate and in Figure 3 the time history of the 
deflection ( )pw t  at points A, B of the stiffened plate are presented. From these 
table and figure the significant influence of the inplane forces and the effect of 
shear deformation are noteworthy. 
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Figure 2: Plan view and section of the stiffened plate of Example 1. 

Table 1:  Eigenperiods ( )iT s  of the stiffened plate of Example 1. 

Including Inplane Forces Ignoring Inplane Forces 

i  With Shear 
deformation 

(Present study) 

Without 
Shear 

deformation 

With Shear 
deformation 

Without Shear 
deformation 

1 0.08704 0.08668 0.09228 0.09042 

2 0.06701 0.06695 0.06753 0.06738 

3 0.05010 0.05008 0.06399 0.05742 

4 0.04573 0.04356 0.05801 0.05297 

5 0.04268 0.04058 0.05037 0.05005 
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Figure 3: Time history of the deflection ( )pw t  at points A, B. 

5 Concluding remarks 

The influence of the inplane forces and the shear deformation effect to the 
deflections is remarkable and should not be neglected. 
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