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Abstract 

This paper relates to hardening systems, their response to dynamic forces and 
their contribution to seismic isolation of buildings’ foundations. 
     The free vibration curve for a structure of continuous gradual changing of 
period and frequency, the dynamic load factor (DLF) for a suddenly applied 
constant load, and the curve of resonance for a pulsating sinusoidal force, are 
analyzed from the perspective of a structural engineer, which is essentially 
different from that of a researcher. 
     The paper suggests a new approach for base seismic isolation, which is a 
combination of a base isolation device and a hardening steel structure. 
     While the contribution of the isolation device is its characteristically high 
flexibility, the contribution of the steel structure consists of a smooth reduction 
of the building’s base displacement under a given earthquake. 
     The combined isolation system also provides a gradual limitation of the 
building’s base displacement under an unexpected increase of the earthquake’s 
peak ground acceleration (PGA). 
Keywords: seismic isolation device, hardening steel structure, smooth reduction 
of base displacement, limitation of base displacement. 

1 Introduction 

This paper presents a new approach for base seismic isolation, which is a 
combination of a base isolation device and a hardening steel structure. 
     According to the results of preliminary investigations, this combination is 
conducive to a remarkable reduction of the maximum displacement of the 
isolated structure and to an appreciable limitation of this displacement under and 
unexpected increase of the design earthquake’s PGA. 

dynamic load is very well known and its basic characteristics, such as natural 
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     The response of a linear elastic structure, (curve 1 in fig. 1), subjected to a 
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circular frequency and period, resonance and the effect of damping, lie at the 
basis of the dynamic analysis of structures. 
     The majority of structures designed by structural engineers all over are ductile 
structures, (curve 2 in fig. 1). Though there is no a straight forward solution for 
their equation of dynamic equilibrium of forces, as is the case with linear elastic 
structures, their dynamic response has been for decades now the object of vast 
and thorough study. 
 

 

Figure 1: 1) Linear elastic structure. 2) Ductile structure. 3) Hardening 
structure. 

     Hardening structures (curve 3 in fig. 1) are not common in the work of 
structural engineers, Sircovich Saar [1]. The knowledge about their dynamic 
response comes mainly from studies of physics, such as for example the diagram 
of resonance in fig. 2. 
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Figure 2: Frequency-amplitude response curve for a hardening structure; a 
“jump and drop” function. 

2 Hardening structures 

For the purpose of introducing an additional steel structure to a base isolation 
system, understanding the subject of period T of a hardening structure seems an 
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adequate starting point even though the concept of period may appear somehow 
evasive at first. 
     Fig. 3a shows a schematic representation of the horizontal motion of mass M 
and fig. 3b shows the curve of variation of the spring’s force. 
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Figure 3: Hardening spring-mass system. 

     The known equation of equilibrium of forces in the un-damped free vibration 
is: 

(X)I 0 F F  

     We choose the family of functions m
(X) xF K for our study, and in 

particular 
3

(X) xF K   
     The equation of equilibrium of dynamic forces for the free vibration becomes 

3x x 0 M K   
a nonlinear differential equation of the second order and third rank. Since it is no 
possible to solve this equation with analytical formulation, the common practice 
is to make use of a numerical procedure. 
     The mathematical treatment of a nonlinear design situation is usually a step-
by-step procedure, with differential increments. In each of those steps the 
dynamic system can be considered linearly elastic. Each step starts with the 
structural and load characteristic from the end of the preceding incremental step. 
The mathematical procedure is by integration of differential equations of 
dynamic forces into a sequence of linear structures with new properties at the 
beginning of each step. There are many procedures available for performing the 
step-by-step integration, such as the very well known Newmark’s    
method. 
     For the structural engineer those mathematical ways are like working with a 
black box that does not contribute much to he’s or her physical understanding of 
the response. Conversely, the approach proposed here, from the perspective of a 
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structural engineer, is essentially different from that of a researcher. Though it 
may be slightly less accurate, it suffices to provide a clear picture of the results. 
     The continuous force-deformation curve, F(x) of fig. 3b, is considered as 
composed of a sequence of dots “n”, as in fig. 4a, and is replaced by a sequence 
of tangential straight lines according to a sequence of x steps, as in figs. 4b, 
4c. 
 
 
 
 
 
 
  
 
 
 
                                                                                           

Figure 4: a) The cubic springs represented by a sequence of dots. b) An 
enlargement of only three consecutive dots. c) Only one 

x increment along one of those tangents. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 5: a) Harmonic free vibration of a linear system. b) Periodic free 
vibration of a cubic spring. 
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     The equation of equilibrium of forces in motion can be replaced, for any dot 
“n”, by 

2
nx ( x ) x 0 M K    

     Since 2
nxK  can get a numerical value for any dot “n”, this equation has an 

analytical solution and the response curve for the cubic spring system becomes a 
sequence of dots, according to a sequence of equal t  intervals of time, which 
depicts the nature of the response; see fig. 5. 
     The relation between the amplitude “A” of a free motion and its period “T” 
appears to be a very simple one: 

 
A.T = Const' 

which means the bigger the amplitude of the free motion the shorter its period. 
      For one quarter of the free vibration cycle the curve of figure 5b, is given by 
the following expression as a succession of harmonic motions: 

 
 

 

     In Fig.6 is represented the DLF diagram for a suddenly applied constant load 
P in the same hardening curve of our study. It was worked out by mathematical 
regression on particular values applying the same general approach. 
 
 
 
 

 
 
 
 
 

Figure 6: DLF curve for a suddenly applied load. 

3 The isolation device - steel structure combination 

The idea of seismic isolation is rather simple: reduction of the earthquake-
induced inertial loads by shifting the fundamental frequency of the structure out 
of the dangerous-for-resonance range, Komodromos [2], and concentration of 
deformation and energy dissipation demands at the isolation system; seismic 
isolation reduces the inter-storey displacements and floor accelerations of the 
structure under strong seismic motion. The superstructure remains essentially un-
deformed, moving like a rigid body, which prevents damage to its structural and 
non-structural components; see fig. 7. 
     This paper suggests a new approach for base seismic isolation, which is a 
combination of a base isolation device and a hardening steel structure.  The basic 
idea is to incorporate a particular steel structure in the same inter-space level 
allocated for the isolation device. 
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     Once the relation between amplitude of motion A and period T of the 
hardening structure becomes clear, combining it with a base isolation device 
comes naturally. While the contribution of the isolation device is its 
characteristically high flexibility, the contribution of the steel structure is a 
smooth reduction of buildings’ base displacement under a given earthquake; see 
results in fig.10a versus fig. 9a and fig. 10b versus fig. 9b.  The hardening steel 
structure’s contribution lies in its continuous changing of period T with the 
continuous changing of amplitude of base displacement (see hardening curve on 
fig.8b), minimizing in this manner danger of resonance between the 
instantaneous SDOF’s frequency and some harmonic components of the ground 
motion. 
     In the practical implementation of seismic isolation a main imposition to the 
architectural/structural design is the wide gap required by calculations between 
the building’s superstructure and a surrounding wall at the isolation level. Based 
on energy dissipation considerations the dimension of this gap should be kept 
reduced as much as possible, Dolce et al. [3]. The combined isolation system 
provides also a limitation of buildings’ base displacement under an unexpected 
increase of the earthquake’s peak ground acceleration  (PGA); see results in fig. 
11a versus fig. 10a and fig. 11b versus fig. 10b. 

 

a) b)
 

 

Figure 7: Fundamental mode of a seismic isolated multi-storey building. 

 
 

 
 
 
 
 
 
 
 
 

Figure 8: a) Base isolation device curve (1). Hardening structure curve (2). b) 
Isolation device hardening structure’s combined curve. 
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a) 

 
b) 

Figure 9: Displacement-time response diagram for El Centro excitation.  
a) Linear elastic structure. b) Elastoplastic structure. 
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a) 

 
b) 

Figure 10: Displacement-time response diagram for El Centro excitation.  
a) Hardening elastic structure. b) Hardening elastoplastic structure. 
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a) 

 
b) 

Figure 11: Displacement-time response diagram for El Centro excitation 
factorized to 150% PGA. a) Hardening elastic structure.  
b) Hardening elastoplastic structure. 
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4 Displacement-time response diagrams 

Two different SDOF structures were subjected to the input of ground motions 
from several recorded earthquake’s ground acceleration-time histories: one 
erected on a seismic isolation device and a second erected on the seismic 
isolation combination. The structures, both with elastic and elastoplastic 
response, see fig. 12, were checked for various periods T from 1 sec. to 4 sec; 
the linear stiffness of the selected base isolation device, of the elastomeric 
bearing type, was 26 t/m and the stiffness of the isolation combination was 
calculated according to the following formula: 
 

3(x) 26 x (x )  F A B   

 
for different values for “ A, B “, and for  "  (x - B)   0 “. 
     Comparison of their response reveals the following results, see figs. 9–11: 
     1)  reduction to approximate 70% of the maximum base displacement; 
     2)  no significant increment of base displacement for an increment to 150% 

on peak ground acceleration, (150% PGA). 
 

 

Figure 12: a) Elastic structure. b) Hardening structure. 

5 Concluding comments 

This paper presents a new approach to building base seismic isolation, which is a 
combination of a base isolator device with a steel hardening structure. It is an 
original idea that still requires investigation before we can reach comprehensive 
conclusions. 
     Several comments, though, can be made already. 
     1) Addition of a hardening structure to a seismic elastomeric bearing isolation 
system significantly reduces the superstructure’s maximum base displacement. 
     2) The possibility that the combined system provides a limit to “maximum 
overall base displacement” is indicated as probable. This preliminary finding 
should be further checked on a selection of acceleration-time histories input. 
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     For a proper evaluation of the isolation combined system the SDOF structure 
should be replaced by an MDOF structure, with due consideration of damping. 
The investigation of base displacement should be complemented with floor 
accelerations, inter-storey drifts and shear forces. 
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