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Abstract 

To reduce seismic damage of steel building structures, a rocking structural 
system which employs the yielding mechanism of base plates has been suggested 
by the authors. When weak base plates yield due to column tension during a 
strong earthquake ground motion, the columns uplift and enable the building 
structure to rock. The performance of the suggested system for earthquake 
response reduction has previously been successfully demonstrated by the use of 
shaking table tests on a three story half scale braced frame. However, these tests 
also established that considerable vertical impulsive force occurs at the column 
bases when the uplifting columns touch down to their original position. The 
objective of this study is to investigate the influence of this impulsive force on 
earthquake response of real scale rocking structures. Earthquake response 
analyses are carried out on a steel model frame with yielding base plates. The 
frame has ten stories and one bay. The height and the width are 37.8 m and 7.5 
m, respectively. The viscous damping is assumed to be proportional to the initial 
stiffness. The critical damping ratio of 2.0% is introduced to the first mode. The 
analysis results showed that vertical response acceleration on the frame is largely 
and instantly amplified by the impact effect when the uplifting column touches 
down. However, the impulsive vertical force does not damage the column, 
because it damps very quickly under the assumption of stiffness-proportional 
viscous damping. 
Keywords: rocking structural system, uplift, impulsive force, seismic damage 
reduction, yielding base plate, steel building structure. 
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1 Introduction 

Past studies have pointed out that the effects of rocking accompanied with uplift 
motion may reduce the seismic damage to buildings subjected to strong 
earthquake ground motions [for example, 1-3]. Based on these studies, structural 
systems have been developed that permit rocking vibration and uplift motions 
under appropriate control during strong earthquake ground motions [4-10]. The 
past shaking table tests by the authors on a three story half scale braced frame 
verified that the rocking structural system, which employs the yielding 
mechanism of the base plates, can reduce earthquake responses of the frame [7-
10]. However, these tests also showed that the considerable vertical impulsive 
force occurs at the column bases by the impact effect when the uplifting columns 
touch down to their original position. When applying the rocking structural 
systems to real buildings, we need to clear the influence of this impulsive 
vertical force. In this study, earthquake response analyses are carried out on a 
real scale model frame which is applied the rocking structural systems to and the 
influence of the impulsive vertical force on its earthquake responses is 
investigated. 
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Figure 1: Model frame. 

Table 1: Section of structural
members. 

Table 2: Yield strength of steel. 

Figure 2: Plan of base plate with
four thin wings. 

Beam under 2F 588 (kN/mm2)
Other members 294 (kN/mm2)
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2 Earthquake response of rocking structural system 

2.1 Model frame and analytical procedure 

The model steel frame used in this study is shown in Fig. 1. The frame has ten 
stories and one bay. The height and the width are 37.8m and 7.5m, respectively. 
The total weight is 2881.2kN. To permit the frame uplift motion, the yielding 
base plate shown in Fig. 2 is attached at each column base on the first floor. The 
sections of the structural members are shown in Table 1. And yield strength of 
steel is shown in Table 2. Because the yielding base plate cannot fix the rotation 
of the column base, the beam under the second floor bends easily. Thus higher 
strength steel is used only for it. Fig. 3 shows the numerical model for the base 
part of the frame. To represent uplift motion, two types of springs are attached at 
each column base. The force-deformation relationships of the springs are shown 
in Fig. 3 (b)(c). As for base plates, the relationship shown in Fig. 3(b) is modeled 
based on the static test results [11, 12]. The characteristic values of the base plate 
are shown in Table 3. The bending force-deformation relationship of edge parts 
of columns and beams is a normal-bilinear type. The M-N interaction is 
considered to evaluate response of columns. 
     Mode shapes and natural periods of the model frame are shown in Fig. 4. 
According to our past study, shaking table test results including the impact effect 
on the test frame that was permitted uplift motion can be represented by the FEM 
dynamic response analysis method assuming the viscous damping is proportional 
to the initial stiffness [10]. Thus the analysis procedure in this study is also based 
on the same assumption about the viscous damping. The critical damping ratios 
for three representative modes are shown in Table 4. The ratio introduced to the 
first mode is 2%. The predominant mode in vertical is the sixth mode with the 
natural period of 0.106s. The critical damping ratio for this mode is 29.48%. 
 

y

K1

K2

Ny

-Ny

Uplift force

Uplift disp.

Uplift force

Uplift disp.

 
(a)                                       (b)                                     (c) 

Figure 3: Numerical model for base part of frame. (a) The base of the rocking 
system, (b) base plate, (c) ground contact. 

Table 3: Characteristic values of base plate. 
 
 

Qy K1 δ y K2/K1
441 (kN) 146 (kN/mm) 3.0 (mm) 0.2
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     The input ground motion is an artificial ground motion (BCJ L2), which is 
used for structural design of high-rise buildings in Japan. The time duration is 
120s and the peak velocity is 0.5m/s. The linear response spectrum for 1-DoF 
systems with critical damping ratio h=2% is shown in Fig. 5. For calculating the 
earthquake responses, a step by step time history response analysis method is 
used. The time interval of numerical integration is 0.001s. 

2.2 Analysis results 

In Fig. 6, the maximum roof drift angle and base shear of the test frame with 
yielding base plates that permitted uplift motion (BPY model) are compared with 
those of the same frame whose bases are fixed (F model). Solid lines show the 
corresponding results of static pushover analyses for the both models. The Ai-
distribution, which is regulated by Japanese building seismic code, is used as the 
lateral force distribution for the static analyses. By permitting the frame uplift 
motion, the maximum base shear of the test frame can be reduced although the 
maximum roof drift angle is increased a little. Fig. 7 shows the damage aspect of 
the test frame with the bases fixed. Plastic hinges occur in some beams. In 
contrast, the analysis result for the test frame permitted uplift motion shows all 
structural members keep elastic except the yielding base plates. 

T (s) h (%)
1st 1.562 2.00
2nd 0.531 5.88
6th 0.106 29.48
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Figure 4: Mode shapes and natural
periods. 

Table 4: Viscous damping 
ratios. 

Figure 5: Tripartite response spectrum of input motion.
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Figure 6: Roof drift angle and 
base shear coefficient. 

Figure 7: Damage aspect of F
model. 

 
 
 
 
 
 
 
 
 

Figure 8 Time history of uplift displacement. 
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Figure 9: Peak vertical responses on each floor: (a) vertical velocity, 

(b) vertical acceleration. 
     Fig. 8 shows the time history of uplift displacements of the BPY model. The 
maximum value is about 40mm. This means the maximum rigid rotational angle 
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of the frame is about 1/189. Fig. 9 shows the peak vertical velocity and 
acceleration on the each floor of the BPY model. These are observed in the right 
side. Fig 10 and Fig. 11 show time history of vertical forces at the column bases 
of the F model and the BPY model, respectively. Comparing Fig. 10 with 
Fig. 11, we can judge both compressive (minus) and tensile (plus) forces of the 
BPY model fall below those of the F model, although the peak vertical responses 
of the BPY model are largely amplified as shown in Fig. 9. 
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Figure 10: Time history of vertical force at base of F model. 
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Figure 11: Time history of vertical force at base of BPY model. 
 

3 Discussion 

Impulsive vertical force NIMP at the column base of the rocking structural system 
with one bay is calculated by the following equation [9]. 

TENCOMIMP NNN ∆+∆=  (1) 
where: ∆NCOM: Vertical force variation in the compressive side, ∆NTEN: Vertical 
force variation in the tensile side. 
 For the fixed base model, the impulsive vertical force by eq. (1) is always 
zero that can be easily understood by seeing Fig. 10.  
     The calculation results for the BPY model are shown in Fig. 12. The 
considerable impulsive forces are presented in this figure. By the way, the 
external vertical force R,LFVi by the vertical inertia effect in the left or right side 
of the each floor is calculated by the following equation. 
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∑
=

=
N

ni
nnViLR zmF,  (2) 

where, mn: mass of node, that is 14.7t in this study (see Fig. 1), nz : vertical 
response acceleration on the node in the right or left side of each floor. 
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Figure 12: Time history of impulsive vertical force at base of BPY model. 
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Figure 13: Time histories of vertical responses in 47.485 – 47.520s: 
(a) vertical response velocity, (b) vertical response acceleration, 
(c) external vertical force; and (d) comparison between impulsive 
vertical force and external vertical force at base. 
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    The external vertical force at the base calculated by Eq. (2) using the peak 
vertical acceleration values shown in Fig. 9 exceed the maximum of the 
impulsive vertical force shown in Fig. 12 largely. This result means that the 
vertical response accelerations on the frame may not reach their maximum 
simultaneously. In Fig. 13, time histories of vertical response velocity, 
acceleration, external vertical force by Eq. (2) and impulsive vertical force by 
Eq. (1) on the right side of the frame are shown focusing the time duration, 
47.485-47.52s, when the peak impulsive vertical force is observed in Fig. 12.  
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Figure 14: Time history of uplift displacement (supplemental analysis). 
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Figure 15: Time history of vertical force at base of BPY model (supplemental 

analysis). 
 
     Just before the column touches down, the vertical response velocity reaches 
its peak, that is about 0.40m/s on all floors as shown in Fig. 13(a). After that, the 
velocities diminish to zero. The velocity of the second floor damps most quickly. 
Fig. 13(b) and Fig. 13(c) show the phase difference between the responses of the 
lower floors and those of the higher floors. As shown in these figures, the 
vertical acceleration and external force are amplified largely only on the lower 
floors in the beginning. We can see that these amplified values do not directly 

T (s) h (%)
1st 1.562 3.00
2nd 0.531 3.00
6th 0.106 12.03

Table 5: Viscous damping ratios for supplemental analysis. 
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correspond with the impulsive vertical force in Fig. 13(d). It is supposed that 
these are moderated by the effect of viscous damping in vertical. 
     To investigate the effect of the viscous damping in vertical, a supplemental 
analysis is carried out. The viscous damping type for the analysis is changed to 
the Rayleigh type. The critical damping ratios for the representative modes are 
shown in Table 5. Time histories of uplift and vertical force at the bases are 
shown in Fig. 14 and Fig. 15, respectively. We can see that the damping type 
affects on the peak uplift little, comparing Fig. 14 with Fig. 8. In contrast, when 
using the Rayleigh type viscous damping for the analysis, the impulsive vertical 
force obviously affects the response of the vertical force at the base. It means 
that we need further studies on the viscous damping in vertical including the soil 
viscous damping under the base to evaluate more precisely the influence of the 
impulsive forces on responses of the rocking structures.  

4 Conclusion 

The effect of the impulsive vertical force on earthquake responses of a real scale 
model frame that permitted uplift motion was investigated. When the uplifting 
columns touched down to their original position, the striking impulsive vertical 
forces were observed. However, they hardly affect the peak vertical forces at the 
bases, because these forces damped very quickly under the assumption of 
stiffness-proportional viscous damping. 
     The results of the supplemental analysis in which the Rayleigh type of the 
viscous damping was used shown that striking impulsive vertical force arose 
more distinctly on the vertical force at bases. It means the further study on the 
viscous damping in vertical including soil viscous damping under the base is 
required to evaluate more preciously the influence of the impulsive forces on the 
response of the rocking structures.  
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