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Abstract 

In this paper a general solution for the dynamic analysis of plates stiffened by 
arbitrarily placed parallel beams of arbitrary cross section subjected to an 
arbitrary dynamic loading is presented. According to the proposed model, the 
stiffening beams are isolated from the plate by sections in the lower outer surface 
of the plate, taking into account the arising tractions in all directions at the 
fictitious interfaces. The aforementioned integrated tractions result in the loading 
of the beams as well as the additional loading of the plate. Their distribution is 
established by applying continuity conditions in all directions at the interfaces. 
The analysis of both the plate and the beams is accomplished on their deformed 
shape taking into account second-order effects. The method of analysis is based 
on the capability to establish a flexibility matrix with respect to a set of nodal 
mass points, while a lumped mass matrix is constructed from the tributary mass 
areas to these mass points. Both free and forced damped or undamped transverse 
vibrations are considered and numerical examples with great practical interest 
are presented. The discrepancy in the obtained eigenfrequencies using the 
presented analysis (which approximates better the actual response of the plate-
beams system since it permits the evaluation of the shear forces at the interfaces 
in both directions) and the corresponding ones ignoring the inplane forces and 
deformations justify the analysis based on the proposed model. 
Keywords: reinforced plate with beams, nonuniform torsion, warping, ribbed 
plate, slab-and-beam structure, vibrations, dynamic analysis. 

Earthquake Resistant Engineering Structures VI  443

 © 2007 WIT PressWIT Transactions on The Built Environment, Vol 93,
 www.witpress.com, ISSN 1743-3509 (on-line) 
doi:10.2495/ERES070421



1 Introduction 

Structural plate systems stiffened by beams are widely used in buildings, bridges, 
ships, aircrafts and machines. In this paper a general solution for the analysis of 
plates stiffened by arbitrarily placed parallel beams is presented. The adopted 
structural model is a refined one of that proposed by Sapountzakis and 
Katsikadelis in [1]. Six boundary value problems with respect to the plate 
transverse deflection, to the plate inplane displacement components, to the beam 
transverse deflections, to the beam axial deformation and to the beam 
nonuniform angle of twist are formulated and solved using the Analog Equation 
Method (AEM) [2], a BEM based method. The essential features and novel 
aspects of the present formulation compared with previous ones are summarized 
as follows. 

i. The stiffened plate is subjected to an arbitrary dynamic loading, while both 
the number and the placement of the parallel stiffening beams are also 
arbitrary (eccentric beams are also included). 

ii. The influence of the transverse traction component at plate-beams 
interfaces is taken into account. A nonuniform variation of the distribution 
of the transverse shear interface force is taken into account by applying 
compatibility equations on points in the transverse direction. Thus, the 
adopted model permits the evaluation of the shear connectors in both 
directions. 

iii. Displacement continuity conditions at the interfaces are applied along all 
three axes of the coordinate system, leading to the formulation of a system 
of equations involving two nonlinear functions, namely the longitudinal and 
transverse inplane shear forces at the interfaces. 

iv. The eccentricities of both the centroid and the shear center axes with 
respect to the midline of the plate – beam interface are also included. 

v. The nonuniform torsion in which the stiffening beams are subjected is taken 
into account by solving the corresponding problem and by comprehending 
the arising twisting and warping in the corresponding displacement 
continuity conditions. 

vi. Terms arising from the internal variable axial loading of both the plate and 
the beams coming from the longitudinal and transverse inplane shear forces 
at the interfaces are taken into account. 

vii. Damping resistance is also included. 

2 Statement of the problem 

Consider a thin plate of homogeneous, isotropic and linearly elastic material with 
modulus of elasticity E  and Poisson ratio ν , having constant thickness ph  and 
occupying the two dimensional multiply connected region Ω  of the x, y  plane 
bounded by the piecewise smooth K+1 curves 1, ,...,0 K 1 K,Γ Γ Γ Γ− , as shown in 
Fig.1. The plate is stiffened by a set of i 1,2,...,I=  arbitrarily placed parallel 
beams of homogeneous, isotropic and linearly elastic material with modulus of 
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elasticity i
bE  and Poisson ratio i

bν , which may have either internal or boundary 
point supports. For the shake of convenience the x  axis is taken parallel to the 
beams. The stiffened plate is subjected to the lateral load g g( ,t )= x , 
x : { x, y } , t 0≥ . For the analysis of the aforementioned problem a global 
coordinate system Oxy  for the analysis of the plate and local coordinate ones 

i i iO x y  and � �ii iO x y  corresponding to the centroid and shear center axes of each 
beam are employed as shown in Fig.1. 
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Figure 1: Two-dimensional region Ω occupied by the plate. 

     The solution of the problem at hand is approached by a refined model of that 
proposed by Sapountzakis and Katsikadelis in [1]. According to this model, the 
stiffening beams are isolated from the plate by sections in the lower outer surface 
of the plate, taking into account the arising tractions at the fictitious interfaces 
(Fig.2). Integration of these tractions along the width of the i-th beam results in 
line forces per unit length, which are denoted by i

xq , i
yq  and i

zq  encountering in 

this way the influence of the transverse component yq , which in the 
aforementioned model [1] was ignored. The aforementioned integrated tractions 
result in the loading of the i-th beam as well as the additional loading of the 
plate. Their distribution is unknown and can be established by imposing 
displacement continuity conditions at the interfaces along ix , iy  and iz  local 
axes following the procedure developed in this investigation. 
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Figure 2: Isolation of the beams from the plate. 

     On the basis of the above considerations the response of the plate and of the 
beams may be described by the following initial boundary value problems. 
 

(a) For the plate. The plate undergoes transverse deflection and inplane 
deformation. Thus, for the transverse deflection the equation of equilibrium 
employing the linearized second order theory can be written as  

( )

2 2 2
p p p4

p p p p p x xy y2 2

i iI py px p pi i i
z x y i

i 1

w w w
D w w c w N 2N N

x yx y

m m w w
g q q q y y

x y x y
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ρ

∂ ∂∂ ∂

∂ ∂ ∂
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∂ ∂ ∂=

 
 ∇ + + − + + =
 
 

 ∂
 − + + − − −
 ∂
 

∑

�� �

in Ω    (1) 

  

the corresponding boundary conditions as 

p1 p p2 pn p3w Rα α α+ =         p
p1 p2 pn p3

w
M

n
∂

β β β
∂

+ =         on Γ (2a,b) 

and the initial conditions as 
 ( ) ( )p p0w ,0 w=x x           ( ) ( )p p0w ,0 w=x x�               (3a,b) 

where ( )p pw w x, y=  is the time dependent transverse deflection of the plate; 
3 2

pD Eh / 12(1 v )= −  is its flexural rigidity; ( )x xN N ,t= x , ( )y yN N ,t= x , 

( )xy xyN N ,t= x  are the membrane forces per unit length of the plate cross 

section; i i
py x pm q h / 2= ; i i

px y pm q h / 2= ; p phρ ρ=  is the surface mass density 

of the plate with ρ  being the volume mass density; pc  is the plate flexural 
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damping constant; ( )p0w x , ( )p0w x  are the initial deflection and the initial 

velocity of the points of the middle surface of the plate; i( y y )δ −  is the Dirac’s 
delta function in the y direction; pnM  and pnR  are the bending moment normal 

to the boundary and the effective reaction along it, respectively. Finally, pia , 

piβ  ( i 1,2,3 )=  are functions specified on the boundary Γ .  
     Since linearized plate bending theory is considered, the components of the 
membrane forces xN , yN , xyN  are given as 
 

p p
x

u v
N C

x y
∂ ∂

ν
∂ ∂

 
= +  

 
        p p

y
u v

N C
x y

∂ ∂
ν

∂ ∂
 

= +  
 

 

            p p
xy

u v1N C
2 y x

∂ ∂ν
∂ ∂

 −
= +  

 
                            (4a,b,c) 

 

where ( )2
pC Eh / 1 ν= − ; p pu u ( ,t )= x  and p pv v ( ,t )= x  are the 

displacement components of the middle surface of the plate arising from the line 
body forces i

xq , i
yq  (i=1,2,…I). These displacement components are established 

by solving independently the plane stress problem, which is described by the 
following quasi-static (inplane inertia forces are ignored) boundary value 
problem (Navier’s equations of equilibrium) 
 

 ( )
Ip p2 i

p x i
i 1p

u v1 v 1u q y y 0
1 v x x y Gh

∂ ∂∂ δ
∂ ∂ ∂ =

 +
∇ + + − − = 

−   
∑   (5a) 

 ( )
Ip p2 i

p y i
i 1p

u v1 v 1v q y y 0
1 v y x y Gh

∂ ∂∂ δ
∂ ∂ ∂ =

 +
∇ + + − − = 

−   
∑  in Ω  (5b) 

             p1 pn p2 n p3u Nγ γ γ+ =          p1 pt p2 t p3u Nδ δ δ+ =         on Γ  (6a,b) 
 

in which G E / 2(1 )ν= +  is the shear modulus of the plate; nN , tN  and pnu , 

ptu  are the boundary membrane forces and displacements in the normal and 

tangential directions to the boundary, respectively; piγ , piδ  ( i 1,2,3 )=  are 
functions specified on the boundary Γ . 
 

(b) For each beam. Each beam undergoes transverse deflection with respect 
to iz  and iy  axes, axial deformation along ix  axis and nonuniform angle of 

twist along � ix  axis. Thus, for the transverse deflection with respect to iz  axis 
the equation of equilibrium employing the linearized second order theory can be 
written as 

i4 i 2 i i
byi i i i i i i ib b b

b y b b b b b z x4 2
i ii i

mw w w
E I w c w N q q

x xx x
ρ

∂∂ ∂ ∂
+ + − = − +

∂ ∂∂ ∂
�� �     in iL  (7) 
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the corresponding boundary conditions as 
 

z i z i z
1i b 2i z 3ia w a R a+ =        z i z i z

1i y 2i y 3iMβ θ β β+ =      at the beam ends (8a,b) 
 

and the initial conditions as 
 

 ( ) ( )i i
b b0w x,0 w x=       ( ) ( )i i

b b0w x,0 w x=�  (9a,b) 
 
 

where ( )i i
b b iw w x ,t=  is the time dependent transverse deflection of the i-th 

beam with respect to iz  axis; i
yI  is its moment of inertia with respect to iy  axis; 

( )i i
b b iN N x ,t=  is the axial force at the ix  centroid axis; bρ  is the surface mass 

density of the beams; i i i
by x Czm q e= ; i

bc  is the i-th beam flexural damping 

constant; ( )i
b0w x , ( )i

b0w x  are the initial deflection and the initial velocity of the 

points of the neutral axis of the i-th beam with respect to iz  axis; z
jia , z

jiβ  

( j 1,2,3 )=  are coefficients specified at the boundary of the i-th beam; i
yθ , i

zR , 
i
yM  are the slope, the reaction and the bending moment at the i-th beam ends, 

respectively.  
     The ( )i i

b b iv v x=  transverse deflection with respect to iy  axis must satisfy the 
following quasi-static (transverse inertia forces with respect to iy  axis are 
ignored) boundary value problem 
 

4 i 2 i i i
i i i i ib b b bz
b z b y x4 2

i ii i

v v v m
E I N q q

x xx x
∂ ∂ ∂ ∂

− = − −
∂ ∂∂ ∂

       in , iiL 1,2,...,I=  (10) 

y y yi i
b y1i 2i 3ia v a R a+ =         y y yi i

z z1i 2i 3iMβ θ β β+ =      at the beam ends (11a,b) 
 

where i
zI  is the moment of inertia of the i-th beam with respect to iy  axis; 

i i i
bz x Cym q e= − ; y

jia , y
jiβ  ( j 1,2,3 )=  are coefficients specified at its boundary; 

i
zθ , i

yR , i
zM  are the slope, the reaction and the bending moment at the i-th 

beam ends. Since linearized beam bending theory is considered the axial 
deformation i

bu  of the beam arising from the arbitrarily distributed axial force 
i
xq  (i=1,2,…I) is described by solving independently the following quasi-static 

(axial inertia forces are neglected) boundary value problem 

 
2 i

i i ib
b b x2

i

u
E A q

x
∂

∂
= −       in , iiL 1,2,...,I=  (12) 

 x i x i x
1i b 2i b 3ia u a N a+ =       at the beam ends (13) 

where i
bN  is the axial reaction at the i-th beam ends given as 
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     Finally, the nonuniform angle of twist with respect to � ix  shear center axis has 
to satisfy the following quasi-static (torsional and warping inertia moments are 
ignored) boundary value problem 
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x x

∂ θ ∂ θ
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�
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i

x x i xx
1i 2i w 3i

i
M

x

∂θ
β β β

∂
+ =       at the beam ends (16a,b) 

where � �
�( )i i

ix x
xθ θ=  is the variable angle of twist of the i-th beam along the � ix  

shear center axis; i i i
b b bG E / 2(1 )ν= +  is its shear modulus; i

wI , �
i
x

I  are the 

warping and torsion constants of the i-th beam cross section, respectively 
�x
jia , 

�x
jiβ  ( j 1,2,3 )=  are coefficients specified at the boundary of the i-th beam; �

i
x

M  

is the twisting moment and i
wM  is the warping moment due to the torsional 

curvature at the boundary of the i-th beam.  
     Eqns. (1), (5a), (5b), (7), (10), (12), (15) constitute a set of seven coupled 
partial differential equations including ten unknowns, namely pw , pu , pv , i

bw , 
i
bv , i

bu , �
i
x

θ , i
xq , i

yq , i
zq . Three additional equations are required, which result 

from the displacement continuity conditions in the direction of ix , iy  and iz  
local axes at the midline of each (i-th) plate – beam interface. These conditions 
can be expressed as 

� �
i i i

p b S y x
w w e θ− =        in the direction of iz  local axis                (17) 

( ) �
�

 i

ii i
p pi i i Pb b x

p b Cz Cy S f ii i

h w w v
u u e e

2 x x x x

∂θ∂ ∂ ∂
φ

∂ ∂ ∂ ∂
− = − − +     in ix  local axis (18) 

�
p pi i i

p b S z x

h w
v v e

2 y
∂

θ
∂

− = − − �         in the direction of iy  local axis (19) 

where ( )
 i

P
S f
φ  is the value of the primary warping function with respect to the 

shear center S of the beam cross section at the midline of the if  (i-th) interface. 
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     In all the aforementioned equations the values of all the eccentricities i
Cze , 

i
Cye , i

S z
e � , �

i
S y

e  and of the primary warping function �P
iS i( y ,z )ϕ �  should be set 

having the appropriate algebraic sign corresponding to the local beam axes. 
     It is worth here noting that the coupling of the aforementioned equations is 
nonlinear due to the terms including the unknown i

xq  and i
yq  interface forces. 

3 Solution procedure 

The numerical solution of the aforementioned problem is achieved employing 
the method presented by Katsikadelis and Kandilas [3]. According to this 
method the domain Ω occupied by the plate is discretized by establishing a 
system of M nodal points on it, corresponding to M mass cells, to which masses 
are assigned according to the lumped mass assumption. Subsequently, the 
stiffness matrix, the damping matrix as well as the load vector with respect to 
these nodal points are established employing the Analog Equation Method [2], a 
BEM based method. This procedure leads to the typical equation of motion for 
the stiffened plate 

 [ ]{ } [ ]{ } [ ]{ } { }m w c w k w g+ + =�� �  (20) 
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Figure 3: Plan view (a) and section a-a (b) of the stiffened plate. 

 © 2007 WIT PressWIT Transactions on The Built Environment, Vol 93,
 www.witpress.com, ISSN 1743-3509 (on-line) 

450  Earthquake Resistant Engineering Structures VI



4 Numerical examples 

A rectangular plate stiffened by an eccentrically placed rectangular beam as 
shown in Fig.3 has been studied. In Table 1 the first four eigenfrequencies taking 
into account or ignoring the interface forces are presented as compared with 
those obtained from FEM solutions. 
 

Table 1:  n nΩ ω ρ=  for various beam heights of the stiffened plate. 

 

nΩ
 

AEM  
with x yq ,q  

(Present study) 

AEM  
without 

x yq ,q   

Shell–Beam  
FE 

(SAP 2000) 

Shell FE 
(NASTRAN)

Solid FE 
(NASTRAN) 

No beam 
1 – 22.1365 22.1434 22.1092 22.1159 
2 – 37.6026 37.1742 37.0602 37.1034 
3 – 61.419 61.0651 60.9110 60.9295 
4 – 85.2215 84.1991 83.9974 84.0378 

Beam height 50cm 
1 36.42768 35.0639 40.8344 41.5054 44.4339 
2 73.06466 49.0746 58.8534 59.3171 64.5881 
3 82.96732 81.4040 85.9298 86.1819 90.4215 
4 122.3293 108.9031 114.3645 113.3465 126.3263 

Beam height 100cm 
1 41.6788 37.8244 48.2654 48.3007 52.6324 
2 84.6763 76.65077 86.4500 86.0006 94.2175 
3 89.0430 85.9815 89.4149 89.2065 98.2054 
4 135.9904 128.5372 135.5596 135.2461 151.5446 

Beam height 150cm 
1 47.7668 41.5472 50.3380 50.1915 55.0737 
2 92.05131 84.1049 90.0815 89.8198 95.0838 
3 93.50865 89.7506 95.9265 95.2206 112.6931 
4 146.0206 138.0287 138.5487 138.0804 152.9531 

Beam height 200cm 
1 51.2582 45.5581 51.1244 50.9369 56.1035 
2 93.2207 89.6741 90.3146 90.0342 95.4062 
3 101.8806 91.7293 99.4490 98.6612 118.3639 
4 151.0629 144.7945 139.5643 139.0592 153.1325 

5 Concluding remarks 

The proposed model permits the study of a stiffened plate subjected to an 
arbitrary loading, while both the number and the placement of the parallel 
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stiffening beams are also arbitrary (eccentric beams are also included). The 
accuracy of the results compared with solid FE is remarkable. 
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