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Abstract 

When buckling occurs in the infill plate of a steel plate shear wall (SPSW), a 
diagonal tension field is formed through the plate. This paper investigates the 
influence of torsional stiffness of surrounding members (i.e. beams and columns) 
on the buckling coefficient and tension field behaviour of SPSW. The linear 
buckling equations in the sense of von-Karman have been solved in conjunction 
with various boundary conditions, by using the Ritz method. Also, in this 
research the effects of symmetric and anti-symmetric buckling modes on the 
behaviour of the tension field and buckling coefficient have been studied.  
Keywords:  steel shear wall, thin plate, shear buckling, symmetric, anti-
symmetric, Ritz method, principal stresses. 

1 Introduction 

The steel plate shear wall is a lateral load resisting system consisting of an infill 
plate located within a frame. While performing experimental investigations on 
the thin aluminum shear panels of an aircraft, Wagner found out that in thin-
webbed structures with stiff boundary members a diagonal tension field would 
be formed when buckling occurs. Then Wagner [1] developed the pure tension 
theory stating that the formation of the tension field is the primary mechanism 
for shear resistant. The incomplete tension field theory was later presented by 
Kuhn et al. [2]. On the basis of Kuhn’s theory the shear resistance capacity is a 
combination of pure shear and inclined tension field. 
     Design engineers require the ability to assess inelastic structural response 
using conventional analysis software that is commonly available. An analytical 
model—termed the strip model—was developed by Thorburn et al. [3] to 
simulate the tension field behaviour, wherein the infill plate is modelled as a 
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series of tension-only strips at the same angle of inclination, θ, as the tension 
field. They derived the angle of inclination for the strips, θ, from the principle of 
Least Work as a function of axial stiffness of boundary members.  
     By including the effect of in-plane flexural stiffness of boundary members 
and employing the principle of Least Work, Timler and Kulak [4] derived 
another equation for θ in terms of axial and flexural rigidities of surrounding 
members.  
     The Canadian Steel Design Standard [5] suggests the application of the strip 
model as a design tool for steel plate shear wall (CAN/CSA 516-01) and the 
equation derived by Timler and Kulak [4] for the calculation of θ  (clause 
20.3.1). However, researchers are still searching for an increase in the precision 
of the prediction of the overall behavior of the shear wall. 
     This paper investigates the effect of different parameters on buckling loads as 
well as on the distribution and orientation patterns of the tension field principal 
stresses. These parameters include torsional stiffness of boundary members as 
well as symmetric and anti-symmetric buckling modes. 

2 Theory 

2.1 Modelling of SPSW 

The surrounding members of the SPSW are modeled by the springs.  
 
 
 
 
 
 
 
 
 

 
 

 

Figure 1: General scheme for a section of the model. 

     To define logical parameter for the amount of torsional stiffness of 
surrounding members, the non-dimensional stiffness parameterα is introduced 
as follows: 
 

                                                          
D

Ktor=α                                                   (1) 
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where torK is the unit length torsional stiffness of surrounding members and D  is 
the flexural rigidity of plate. A model is defined for studying the effect of the 
stiffness parameter α  shown in fig. 1. This way, a comparison between the 
effectiveness of different stiffness parameters of surrounding members is carried 
out. 

2.2 Ritz method 

This paper utilizes the Ritz method to analyze the buckling of infill plate of a 
SPSW under an applied in-plane shear loading (fig. 2). The geometric )( pV and 

the elastic strain energy )(U are the variants used in the energy solution, and are 
given by the following equations: 

        
                                            ( )∫−=

A
yxxyp dAwwNV ,,                                      (2) 

 
where AN xy ,  and w  are the elastic shear buckling load, the area and the lateral 
buckling displacement of the plate, respectively. The comma denotes 
differentiation with respect to the corresponding co-ordinates. 
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in which sU is the strain energy of the spring are defined by:  
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In the use of the Ritz method, an appropriate displacement function for w  must 
be chosen. That used herein is the polynomial-based displacement function 
which consists of a boundary polynomial specifying the geometric and kinematic 
boundary conditions multiplied by a complete simple polynomial. This 
displacement function is written by: 
 

                                    ∑∑
= =
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p

q

q
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mmb aw

0 0

),(),( ηξφηξϕ                                   (5) 

 

where p  is the degree of a two-dimensional polynomial and ma is the arbitrary 
Ritz coefficient. 
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Figure 2: Isotropic plate under pure shear. 

     ),( ηξφm is the m-th term of a two-dimensional polynomial as below (Smith 
et al. [6]): 
 
                                                   rqr

m
−= ηξηξφ ),(                                           (6) 

 
in which byax /2,/2 == ηξ  is given by: 
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                                       (7) 

 
The term ),( ηξϕb  is the boundary polynomial describing the boundary 
conditions defined by: 
 
                                  1111 )1()1()1()1(),( +−+−= ηηξξηξϕb                     (8) 
 
In the buckling analysis, the kinematic and geometric boundary conditions are 
specified when the boundary polynomial ),( ηξϕb is multiplied by the 
corresponding internal interpolation polynomial. 
 

2.3 Linear eigenvalue analysis 

The total potential energy Π  of the system is given by: 
 

                                                           pVUΠ +=                                              (9) 
 
Based on the principal of minimum potential energy, the total potential Π  in 
eqn. (9) is minimized with respect to the unknown Ritz coefficient ma . Because 
Π  is a function of the product of Ritz coefficients nmaa , minimization by 
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formal differentiation leads to a set of simultaneous linear independent 
equations. The solution of these equations produced the eigenvalues (buckling 
loads) and substituting of the corresponding eigenvectors into the displacement 
function w  in eqn. (5) as the Ritz coefficients gives the buckling modes.  

2.4 Stress analysis 

Since the buckling modes of a plate specify the proportional values of transverse 
deflections, the corresponding values of strains and stresses will be calculated 
proportionally. Using the transverse deflection w , the stresses in the mid-plane 
of plate can be written by: 
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where G  is the shear modulus of elasticity. Using the Mohr’s circle, the state of 
stresses can be represented in the principal coordinates. Also the angle of 
inclination of the tension field can be calculated by determining the orientation 
of the principal stresses. Then, it is possible to plot the distribution and 
orientation patterns of the principal stresses in the tension field of a plate. 

3 Numerical parametric studies 

3.1 Shear buckling analysis 

A computer program has been developed based on the von-Karman theory and 
the Ritz method. The numerical analyses were performed by the computer 
program. In these buckling analyses, the value of p  was selected equal to 8. To 
compare the various buckling analyses, the non-dimensional buckling coefficient 
was employed as follows: 
 

                                                       
D
bN

k xy
s 2

2

π
=                                               (11) 

 
By plotting the various buckling mode shapes, it will be specified which modes 
are symmetric or anti-symmetric. The “first” symmetric and anti-symmetric 
modes are corresponding with the minimum values of the symmetric and anti-
symmetric buckling loads, respectively. However, in this paper the word “first” 
is omitted for brevity. On the purpose of verifying the validity of buckling 
analyses, the results are compared with the available references. So, the stiffness 
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of spring is selected equal to zero or infinite for modelling simply support (S) or 
clamped edges (C), respectively. In table 1, the resulting buckling coefficients 
from the present analyses have been compared with those reported in references. 
As the table 1 shows, the results are in good agreement. 

Table 1:  Comparison the present results with those of available reference. 

sk  
Present  Stiffness 

Parameter 
Boundary 
Conditions a/b 

Symmetric Anti-
symmetric 

Timoshenko 
(1963) 

1.0 9.3254 11.5484 9.34 
1.5 7.0707 7.9591 7.10 
2.0 6.5464 6.5781 6.60 0=α  

 3.0 5.9535 5.8465 5.90 
1.0 14.6515 17.1165 14.71 
1.5 11.4791 12.0293 11.50 
2.0 10.6527 10.5545 10.34 

∞=α  

 3.0 9.8449 10.6985 ------- 
 
     Typically, the symmetric and anti-symmetric buckling modes of plate are 
depicted in three-dimension views (fig. 3). Fig. 4 shows the effect of varying the 
stiffness parameters α on the symmetric and anti-symmetric buckling coefficients 
of plate. The following results can be concluded by attending to these figures: 
 

• The symmetric and anti-symmetric buckling coefficients of a plate with 
aspect ratio equal or greater than 1.5 are close together.  

• Although the symmetric buckling mode is often the critical mode of 
shear buckling, sometimes the anti-symmetric mode would be critical. 

• Fig. 4 shows that the shear buckling mode of a plate would not be 
changed by varying the stiffness parameter α; because there is no 
intersection for curves in fig. 4. 

 

3.2 Stress analysis 

3.2.1 Principal stress distribution pattern (PSDP) 
By comparing the PSDPs with the corresponding buckling modes, the areas 
where the amounts of principal stresses are peak, may be specified. Fig. 5 
illustrates these comparisons for two extreme values of zero and infinite for the 
stiffness parameter α. This figure shows that the peak(s) of principal stresses 
occurs at the slope(s) of buckling mode shapes for both symmetric and anti-
symmetric modes. Therefore, in symmetric buckling modes, the principal 
stresses peaks are being at both sides of the plate centre, while in anti-symmetric 
buckling this peak would be in centre of the plate. Also, fig. 5 shows that the 
PSDPs are symmetric for both symmetric and anti-symmetric buckling modes. 

CCCC 

SSSS 
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Figure 3: Symmetric (a) and anti-symmetric (b) shear buckling modes. 

 
 
 

 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 

 

Figure 4: Shear buckling coefficient vs. α (line for symmetric and dashed for 
anti-symmetric buckling). 

3.2.2 Principal stress orientation pattern (PSOP) 
For showing some patterns simultaneously, it is advantageous that the patterns 
are putted together and combined as shown in fig. 6. The orientations of 
principal stresses can be determined at each point of the plate by using the 
Mohr’s circle. Fig. 7 shows the combined PSOPs related to various values of 
stiffness parametersα . In this figure, the orientation of each depicted line 
represents the orientation of the related principal stress. By careful observation, it 
is realized that, there are areas in the plate where the orientations of related 
principal stresses will not be changed by varying the value of the stiffness 
parameterα.  

sk

α
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Figure 5: Symmetric and anti-symmetric buckling mode shapes and PSDPs 
for two extremes of 0=α and ∞=α (aspect ratio 1.5). 

 
     These areas of the plate in symmetric buckling are more extended than those 
in anti-symmetric buckling. Also, these areas have different distribution for the 
symmetric and anti-symmetric buckling modes. 
     Fig. 8 shows the combinations of PSOPs related to symmetric and anti-
symmetric buckling modes. This figure reveals that the PSOPs are relatively 
different for the symmetric and anti-symmetric buckling modes. 
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                                                          Combination 

 
Figure 6: Scheme for combination of some patterns. 

Symmetric buckling Anti-symmetric buckling 

 

Figure 7: Combination of PSOPs related to variousα for symmetric and anti-
symmetric buckling modes. 

 

Figure 8: Combination of PSOPs related to symmetric and anti-symmetric 
buckling modes ( 0=α ). 
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4 Conclusions 

Initial imperfection of plates due to their fabrication causes that the plates do not 
experience the buckling bifurcation point. The type of postbuckling mode of a 
plate may be a function of its initial imperfection, especially for the plate with 
close buckling loads correspond with different buckling modes. This research 
reveals that buckling loads correspond with first symmetric and anti-symmetric 
buckling modes of a plate with an aspect ratio equal or greater than 1.5 are close 
together. This result specifies the important role of the initial imperfection of a 
plate in determining the postbuckling mode of the plate.  
     It is also shown that the orientation patterns of principal stresses correspond 
with the symmetric and anti-symmetric buckling modes of a plate are different, 
relatively. Since the angle of inclination of the tension field of a SPSW is an 
effective parameter on development of the strip model, so, this result may be 
vital in modifying the strip model. The role of initial imperfection of the plate in 
determining the type of buckling mode has not been included in any analytical 
models presented so far.  
     These studies also reveal that variation of amount of torsional stiffness of 
boundary members does not change the orientations of principal stresses in some 
areas of the plate. These areas where located in the slopes of the buckling mode 
shapes have relatively great principal stresses. 
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