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Abstract

Owing to the many degrees of freedom provided by current engine systems and to
the need to consider transient operation, deriving an engine calibration has become
a tedious task. Control trajectories resulting from the solution of an optimal-control
problem provide a guideline to the calibration engineer, serve as a benchmark, and
might be used for a partial automation of the calibration procedure. The common
approach to dynamic optimisation consists of solving a single optimal-control
problem. However, this approach requires the availability of models that are valid
throughout the whole engine operating range and actuator ranges. In addition, the
result of the optimisation is meaningful only if the model is very accurate. We
propose a methodology to circumvent those demanding requirements: an iteration
between transient measurements to refine a purpose-built model and a dynamic
optimisation which is constrained to the model-validity region. This paper presents
all numerical methods required to implement this procedure. The crucial steps
are analysed in detail, and the most important caveats are indicated. Finally, an
experimental validation demonstrates the applicability of the method and reveals
the components that require further development.
Keywords: optimal control, engine optimisation, transient operation, mean-value
model, turbocharger, EGR, VGT.

1 Introduction

Optimal control of Diesel engines becomes increasingly important. More stringent
emission regulations [1, 2] require the exploitation of the remaining potential to
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further reduce the pollutant emissions, especially during transient operation [3, 4].
Simultaneously, the fuel consumption has to be minimised for economical and
environmental reasons. Nowadays, deriving an engine calibration is a tedious and
iterative task, owing to the many degrees of freedom provided by current Diesel
engines and to the requirement of considering transient operation. Optimal control
is a tool that can support the calibration engineer. The optimal control trajectories
indicate directions for the calibration, disclose shortcomings of a chosen control
structure and serve as a benchmark. If all relevant operating conditions are covered
by the transient cycle, it may be even possible to derive the optimal static maps
from the optimal control and state trajectories.

The common approach to dynamic optimisation is to use a large amount
of stationary or transient measurement data to identify a globally valid model.
Relying on this model, the optimal-control problem (OCP) is solved at once.
This approach assumes that all influences on the relevant outputs are captured
by the model and the selected set of control inputs. We propose to iterate
between the dynamic optimisation, restricted to the current model-validity range,
and the refinement of the model using specific transient measurements. This
approach avoids measurements in irrelevant regions. Furthermore, refining the
model using transient measurements on the driving cycle at hand allows to account
for the effect of all influences that are missing in the model. This compensation
mechanism allows for the use of a simple mean-value model for the air path
as well as empirical setpoint-relative emission models. It is thus not required to
develop sophisticated combustion models that have to provide reliable far-field
extrapolation.

The drawback of the method is that multiple runs of the transient cycle have
to be performed during each iteration. The procedure is thus best suited for
compact test cycles containing all relevant transient patterns in condensed form.
Alternatively, some recurring transient patterns such as load steps or accelerations
can be optimised separately to gain insight into the structure of the optimal
trajectories of the control inputs.

Similar approaches were already used in the early days of automated engine
calibration [5,6]. However, due to limitations in computer hardware and software,
a predefined structure of the control system had to be assumed. Furthermore,
the transient measurements were used to directly construct gradient information
for the optimisation, since the vast amount of model evaluations required to
numerically solve a nonlinear OCP would have been prohibitive at that time.
Nowadays, such computing power is readily available. Thus, we use a physics-
based model for the air-path to capture the system dynamics, and embed time-
variable models for the pollutant emissions and for the torque generation. The
accuracy of the air-path model is increased by applying a “generalised Kalman
filter”. All OCPs occurring within the methodology are solved numerically by
transcribing the continuous-time problem into a finite-dimensional nonlinear
program (NLP).

In this paper, we describe and analyse all models and numerical methods
required to implement the iterative procedure. Furthermore, we present the
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Figure 1: Structure of the engine model.

experimental setup and the testbench-software interfaces. Finally, one iteration of
the procedure is executed on an engine testbench and the results are analysed and
discussed.

2 Methods

We first describe the engine model. In the subsequent sections, the OCP is stated
and its numerical solution is presented, the transient model refinement is described,
and the implementation on the engine testbench is outlined. Finally, the iterative
procedure combining all these methods is stated.

2.1 Engine model

The model can be subdivided into a dynamic and a static part as illustrated in
Fig. 1. All dynamics are induced by the air path, i.e. the turbocharger inertia and
the volumes. The full model is represented in state-space form as

ẋ(t) = f(x(t),u(t)), (1a)

y(t) = g(x(t),u(t)), (1b)

where the nx = 6 state variables, the nu = 4 control inputs, and the outputs are

x =
(
pIM, ϑIM, xbg, pEM, paTB, ωTC

)T
,

u =
(
uVGT, uEGR, ϕSOI,mfcc

)T
, y =

( ∗
mNOx,

∗
msoot, Tload

)T
.

The indices denote the intake and exhaust manifolds (IM/EM), the volume
between the turbine and the exhaust-gas aftertreatment system (aTB), and the
turbocharger (TC). The positions of the variable-geometry turbine (VGT) and the
exhaust-gas recirculation valve (EGR) are pulse-width modulation signals with
a range of [0, 1]. The crank angle of the start of the injection (SOI) is specified
in degrees before top dead center. Finally, the burnt-gas fraction in the intake
manifold is denoted by xbg. The outputs of the air-path model, i.e. the dynamic
inputs to the combustion model, are denoted by v := (pIM, xbg)

T , with

v(t) = gAP(x(t),u(t)) = CAP · x(t) =
[
1 0 0 0 0

0 0 1 0 0

]
· x(t). (2)
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2.1.1 Air-path model
The mean-value model for the air path is adopted from [7]. The thermal models
for the walls of the exhaust and intake manifolds are omitted. Furthermore, the
submodels for the EGR are added, and an additional restriction representing the
exhaust-gas aftertreatment system (ATS) is included. Some other submodels are
slightly adapted to the engine at hand and to the intended use. The new model
parts are briefly described next.

The EGR valve is modelled as a modified form of the simplified isenthalpic
orifice [1, Sec. 2.3.2] with a variable effective cross-sectional area,

∗
mEGR = (k0 + k1 · uEGR) · pEM ·

√
pIM
pEM

·
(
1− pIM

pEM

)
. (3)

For the temperature difference across the EGR cooler (EGC), a simple stationary
energy balance is evaluated. The average of the inflow and outflow temperatures is
used as the representative temperature, which yields

kEGC ·
(
ϑEM + ϑEGR

2
− ϑclf

)
=

∗
mEGR · (ϑEM − ϑEGR). (4a)

The temperature of the cooling-fluid is assumed to be constant, i.e. ϑclf = 360K,
and the efficiency parameter kEGC depends on the mass flow,

kEGC = kEGC,1 · ∗
mEGR + kEGC,2 · ∗

m
2

EGR. (4b)

Differential equations The change of the state variables, i.e. the equations
defining (1a), represent balances for mass and energy. In the intake receiver,
the mass balances for the air and the burnt gas as well as the energy balance
is resolved for the state variables pressure, temperature and burnt-gas fraction
xbg :=

mbg

mair+mbg
.

f1 =
d

dt
pIM =

R

VIM
κ
( ∗
mCPϑIC +

∗
mEGRϑEGC − ∗

mcylϑIM

)
, (5a)

f2 =
d

dt
ϑIM =

RϑIM

pIMVIMcv

[
cp

( ∗
mCPϑIC +

∗
mEGRϑEGC − ∗

mcylϑIM

)
(5b)

−cvϑIM

( ∗
mCP +

∗
mEGR − ∗

mcyl

)]
,

f3 =
d

dt
xbg =

RϑIM

pIMVIM

( ∗
mEGRxbg,EM − (

∗
mEGR +

∗
mCP) · xbg

)
. (5c)

The indices CP and IC denote quantities corresponding to the compressor and the
charge-air intercooler, respectively. The burnt-gas fraction in the exhaust gas is

xbg,EM =
xbg

∗
mcyl + (1 + σ0) · ∗

mfuel
∗
mcyl +

∗
mfuel

.
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Figure 2: Exemplary static and dynamic references over a load step, and the
validity regions of the corresponding setpoint-relative models.

The mass balances in the exhaust manifold and in the volume between turbine and
ATS as well as the turbocharger momentum balance are provided in [7].

2.1.2 Combustion model
Time-variable quadratic setpoint-deviation models are used for the emissions and
for the combustion efficiency. The cross-terms of the full second-order Taylor
expansion are omitted since also the nu(nu − 1)/2 cross variations would need
to be performed to reliably identify the corresponding model coefficients. The
model coefficients are identified around the current reference trajectory during
each iteration. The vector w = (pIM, xbg, ϕSOI,mfcc)

T denotes all inputs to the
combustion model. The model for each output thus reads

yi(t) = yref,i(t) + klin(t)
T ·Δw(t) + Δw(t)T ·Kquad(t) ·Δw(t), (6a)

with

Kquad(t) = diag
(
kquad,1(t), . . . , kquad,4(t)

)
, (6b)

Δw(t) = w(t)−wref(t). (6c)

Such stepoint-relative models are often used for control and optimisation
applications [8, 9]. However, usually the references for the inputs w are stored as
a static lookup map over engine speed and load. During transient operation such
as a load step, the actual values of the dynamic inputs (pIM and xbg in the case
at hand) can be far from the steady-state reference values. By using time-resolved
reference values and correction factors, the validity range of the model is relocated
to the actually relevant region, which is illustrated in Fig. 2.
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2.2 Numerical optimal control

The Diesel-engine problem can be cast in the form of the following OCP.

min
u(t),x(t)

{
mfuel =

∫ tf

0

∗
mfuel

(
x(t),u(t), ñeng(t)

)
dt

}
(7a)

s.t. ẋ(t)− f(x(t),u(t), ñeng(t)) = 0, (7b)∫ tf

0

∗
mem(x(t),u(t), ñeng(t)) dt− m̂em ≤ 0, (7c)

T̃ (t)− Tload(x(t),u(t), ñeng(t)) ≤ 0, (7d)

u(t) ≤ u(t) ≤ u(t), x(t) ≤ x(t) ≤ x(t). (7e)

The instantaneous fuel consumption
∗
mfuel = mfcc · ñeng

120 ·Ncyl is integrated to
yield the cumulative fuel consumptionmfuel. The dynamic constraints (7b) enforce
the model equations and (7c) limit the cumulative emissions. The engine speed
prescribed by the driving cycle, ñeng(t), is considered a time-varying parameter.
The desired load torque T̃ (t) is imposed as a time-local inequality constraint (7d).

2.2.1 Direct transcription
The continuous-time OCP (7) is transformed into a finite-dimensional
mathematical program by direct transcription. An integration scheme is applied to
approximate all continuous signals. Due to the stiffness of the system, the method
of choice is the family of Radau collocation schemes [10]. These stiffly accurate
schemes provide stiff decay and algebraic stability [11, Sec.3.5]. Their implicit
nature is irrelevant when used in the context of direct transcription. The first-
order representative, the well-known Euler-backward discretisation, is used for the
solution of the OCPs in this study. It is found to be very robust and it provides the
solution on a uniform discretisation grid, which can be consistently implemented
on the testbench.

The set of continuous ordinary differential equations (7b) is transformed to

xk+1 = xk + h · f(uk+1,xk+1, ñeng,k+1), (8)

adopting the notation xk := x(tk). A uniform step size of h = 0.1s is used,
yielding a grid of N points 0 = t0 < t1 < . . . < tN−1 = tf . Accordingly, all
integrals are approximated as a sum,∫ tf

0

∗
m•(u(t),x(t), ñeng(t)) dt ≈ h ·

N−2∑
k=0

∗
m•(uk+1,xk+1, ñeng,k+1). (9)

The bounds on the controls and on the state variables are imposed at the grid points.
This discretisation of the problem yields a sparse NLP. Sparsity signifies that

only few entries in the Jacobian matrix, which contains the first partial derivatives
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of the constraints, are non-zero. In fact, (8) reveals that only each two neighboring
grid points are related. Furthermore, the control inputs and the state variables
appear in nonlinear form only in f(uk+1,xk+1, ñeng,k+1) and in the output
function g. Thus, only the partial derivatives of the model functions f and g w.r.t.
the control inputs and the state variables at each discretisation point have to be
calculated to construct the Jacobian of the NLP. Assembling the first-derivative
information of the NLP from the model derivatives corresponds to a perfect
exploitation of the problem sparsity [12].

The derivatives of the model equations are calculated by forward finite
differences. Therefore, one additional model evaluation is required for each partial
derivative. The solver SNOPT 7.2 [13] is used to solve the sparse NLP. It
approximates the second partial derivatives by iterative updates using the first-
derivative information along the solution steps.

2.2.2 Regularisation
Singular arcs are time intervals during which the Hamiltonian (the combination of
the objective and the appropriately weighted constraint violations) becomes affine
in the controls. During such intervals, the second derivatives vanish, which results
in spurious oscillations when applying direct transcription to solve the OCP. A
more detailed analysis of this phenomenon is provided in [14, Sec. 4.5].

In the said thesis, a regularisation based on the “piecewise derivative variation of
the control” is proposed as a countermeasure. The regularisation term, for a scalar
control input u, is

Lreg(u•) := cN · ˙Var
2

tN (u•) =
creg

(N − 3)(N − 1)2
· 1
2

N−1∑
l=3

|sl+1 − sl|2, (10)

where sl = (ul−ul−1)/(tl−tl−1) is the slope of the control in each discretisation
interval l. The factor (N − 3) in cN accounts for the number of summation
terms, whereas (N − 1)2 is an approximation of the average step size. This
formulation scales the regularisation term according to the chosen resolution of the
approximation, such that the effect of the user-specified parameter creg is invariant.
The regularisation term (10) is summed over all control inputs and added to the
discretised form of the objective (7a).

2.3 Transient model refinement

This section describes the methods to refine the dynamic part of the model and to
identify the combustion model at each iteration. The interaction between the two
model portions is indicated at the appropriate locations in the text.

2.3.1 Refinement of the dynamic air-path model
A generalisation of a Kalman filter is applied to the dynamic part of the model [15].
In order to correct for systematic model errors, the model equations are augmented
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by the dynamic and the static corrective variables x̃f and x̃g,

ẋ(t) = f(x(t),u(t)) +Kf · x̃f(t), (11a)

xcorr(t) = x(t) +Kg · x̃g(t). (11b)

The matrices K f and Kg define which dynamics are adjusted and for which state
variables the absolute values are corrected.

The optimal-control framework described in Sec. 2.2 is used to derive the
trajectories of the corrective variables. As objective, the integrated squared error in
the corrected state variables is used, yielding a least-squares fit of these trajectories.
The original state variables remain in the OCP, but the control inputs become time-
varying parameters. Instead, the corrective variables x̃(t) = (x̃T

f (t), x̃
T
g (t))

T are
optimised in the OCP,

min
x(t),x̃(t)

∫ tf

0

bT ·KT
g ·

(
x(t) +Kg · x̃g(t)︸ ︷︷ ︸

xcorr(t)

−x̂(t))2 dt (12a)

s.t. ẋ(t) = f (x(t), û(t)) +Kf · x̃f(t). (12b)

Quantities with a hat, e.g. x̂, denote measured signals. The vector b contains the
weights to put more emphasis on the accuracy of some of the corrected state
variables. The regularisation term introduced in Sec. 2.2.2 can be used to penalise
fast changes of corrective variables. In fact, smooth trajectories are desirable since
the model errors are assumed to be of a systematic nature.

If the data from a single measurement is used to identify the corrective variables
by solving (12), a perfect match of the corrected state trajectories is obtained
by adjusting x̃g only. Therefore, multiple measurements need to be considered
simultaneously. In the optimal-control framework, Nm instances of the model are
stacked to yield a new system with Nm ·nx state variables. The error in the relevant
outputs is cumulated over all measurements.

min
x(1)(t),...,xNm (t),x̃(t)

Nm∑
k=1

∫ tf

0

bT ·KT
g ·

(
x(k)(t) +Kg · x̃g(t)︸ ︷︷ ︸

x
(k)
corr(t)

−x̂(k)(t)
)2

dt

(13a)

s.t.

⎛
⎜⎜⎝

ẋ(1)(t)
...

ẋ(Nm)(t)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

f(x(1)(t), û(1)(t)) +Kf · x̃f(t)
...

f(x(Nm)(t), û(Nm)(t)) +Kf · x̃f(t)

⎞
⎟⎟⎠ . (13b)

2.3.2 Identification of the combustion model
The models for the emissions and the torque generation are re-identified at each
iteration. In the final version of the algorithm, all data collected so far should be
used during the identification to successively expand the model validity region
over the iterations. It is an open point whether the model structure should be
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adapted, i.e. its complexity increased according to the data available. Alternatively,
the measurements could be weighted by their distance to the current w(t) to
yield a tradeoff between the representation of local and far-field trends. For now,
the variations around the initial trajectory are considered only, and the quadratic
setpoint-relative model described in Sec. 2.1.2 is used.

A slight averaging w.r.t. time is performed to suppress measurement noise and
to provide a smooth model, which is advantageous in the context of optimisation.
A windowed Gauss curve is used to weight the preceding and consecutive samples
for the identification of the model at each time instant,

θ(Δt) =

{
exp

(− Δt2

σ2

)
, if |Δt| <√−σ2 · loge(θcut),

0, else.
(14)

The parameter θcut defines the value for θ at which the Gauss curve is cut. Figure 3
shows the curve for the parameter values σ = 0.4s and θcut = 0.5%, which are
found to be a reasonable choice.

For each output yi, a weighted linear least-squares regression is used to identify
the coefficients at each sampling point tk. The Nm − 1 variations are used, which
are again denoted by the superscript index in round brackets. The equation system

(XTWX) · p = XTWΔyi, (15a)

is solved for p, where

p =
(
klin,1(tk), . . . , klin,4(tk), kquad,1(tk), . . . , kquad,4(tk)

)T
, (15b)

Δyi =

⎛
⎜⎜⎝
yi(t−l)− yref,i(t−l)

...
yi(tl)− yref,i(tl)

⎞
⎟⎟⎠ , (15c)

X =

⎡
⎢⎢⎣
Δw1(t−l) · · · Δw4(t−l) Δw1(t−l)

2 · · · Δw4(t−l)
2

...
...

...
...

Δw1(tl) · · · Δw4(tl) Δw1(tl)
2 · · · Δw4(tl)

2

⎤
⎥⎥⎦ ,

(15d)

W = diag
(
θ(t−l − tk) · INm−1, . . . , θ(tl − tk) · INm−1

)
. (15e)

Here, l is the number of samples inside the window in both directions, and INm−1

is the identity matrix. Each vectorΔwj :=
(
w

(1)
j −wref,j , . . . , w

(Nm−1)
j −wref,j

)T
stacks all variations (similarly for yi). Here, Δw2

j denotes element-wise squaring.

2.4 Engine and experimental setup

All measurements are performed on the Diesel engine specified in Table 1.
The signals required to identify the air-path model are obtained from standard
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Figure 3: Windowed Gauss function used for the time-averaging of the combustion
model. The dashed lines delineate the window.

ECU sensors installed on the engine as well as some additional sensors for
the temperature and the pressure at specific locations. A fast measurement of
the instantaneous emissions is required. The NOx emissions are measured by a
Cambustion fNOx 400 Fast CLD and a UniNOx sensor. The accurate but slow
signal from the latter is used to calibrate the fast but drifting signal of the fNOx
400. The soot emissions are recorded by means of an “AVL Micro Soot Sensor”.
The dynamic response of this device is identified by performing several steps of
the injected fuel mass at different operating points. A constant delay of 0.95s and
a first-order element with a time constant of 0.25s are found to closely emulate the
sensor dynamics.

The test bench is equipped with a dynamic brake which is controlled by a
dSPACE rapid prototyping system. This system is able to prescribe arbitrary
profiles for the engine speed and load. The production ECU of the engine can only
be accessed for reading operations, thereby no changes or additions to the control
structure can be realised. A higher degree of freedom for the engine control is
provided by an ES910 rapid prototyping module. A schematic representation of
its interaction with the ECU and the Host PC is shown in Fig. 4. CAN and LIN
interfaces provide the connection of the ES910 module to the ECU bus and to the
external CAN-modules (Input/Output operations). This setup provides complete
control over all relevant control inputs of the engine.

INTECRIO is used to set up the rapid-prototyping models on the ES910, while
the INCA add-on EIP provides online read and write access to all relevant labels.
Any ECU function can be bypassed by means of the ECU-interface ETK. For the
application at hand, this functionality is utilised to directly apply time-resolved
control trajectories.

The iterative procedure relies on two modes of operating the engine.

Table 1: Main data of the engine used in this work.

engine type: Diesel, V6 displacement: 2987 cm3

EGR: high pressure, cooled compr. ratio: 15.5

turbocharger: VGT, charge-air cooler bore/stroke: 83/92 mm

injection: CDI 4, max. 1600 bar valves/cyl.: 4

max. torque 400 Nm (1400–3800 rpm) rated power: 165 kW (3800 rpm)
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Figure 4: Hardware, software, and interfaces of the testbench setup.

(A) The ECU with its standard calibration controls the engine. The testbench
controller is used to follow the desired profiles of the engine speed (by
controlling the brake torque) and the load torque (by controlling the
fuelling). This mode is used for the initialisation of the iterative procedure.
The resulting trajectories of the controls, including the injected fuel mass,
are recorded.

(B) Time-resolved trajectories are prescribed for all control inputs using the
rapid-prototyping module and the bypasses of the ECU. The testbench
controller is only used to follow the engine-speed profile. This mode is used
for validation runs as well as for all variations.

2.5 Iterative procedure

The inputs to the procedure are a transient driving profile, consisting of engine
speed and load torque trajectories, and any calibration of the ECU that is able to
operate the engine along this profile.

1. Initialisation: drive the profile in mode A. Save the resulting trajectories of
the control inputs, set them as the “current controls” u(t). Set the corrective
variables x̃(t) to constant zero.

2. Perform 1 + 2 · nu testbench runs in mode B. Thereby, apply
(a) the current controls u(t), and
(b) isolated perturbations of all controls in both directions,

i.e. ui(t)← ui(t)±Δui, for i = 1, . . . , nu.
3. Use the measurement data from step 2 to identify the corrective variables

x̃(t) by solving (13). Run simulations of the refined air-path model for all
variations, and save the resulting corrected state trajectories xcorr(t).

4. Use the state trajectories of the air-path model from step 3 to identify the
torque and emission models around the current references by solving (15).
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5. Solve the control and state constrained OCP (7) to derive the improved
control trajectories u∗(t). Thereby, set

u(t) = u(t)− ku ·Δu, u(t) = u(t) + ku ·Δu, (16a)

x(t) = kx ·min{x(t)(k)| k = 1, . . . , 1 + 2 · nu}, (16b)

x(t) = kx ·max{x(t)(k)| k = 1, . . . , 1 + 2 · nu}. (16c)

6. Set u(t)← u∗(t), repeat steps 2.-5. until the change in the controls is small.

Using the simulated state trajectories during the identification of the combustion
model in step 4 ensures a consistent prediction of the emissions and of the torque
inside the validity region. This fact is important since also the optimisation in
step 5 is restricted to this region. This “trust region” can be slightly expanded by
the factors ku and kx.

Since the identification of the models for the air path and for the combustion are
identified separately, the physical causality is preserved. More exactly, there is no
way that the combustion model corrects errors in the air-path model or vice-versa.
Although a combined identification could yield a slightly higher accuracy, it would
introduce unphysical cross corrections. Furthermore, the identification procedure
would become more complex and non-convex.

3 Results and discussion

A short test cycle is used to evaluate the methods presented in the preceding
sections. The engine is operated at a constant speed of 2500 rpm, and the
desired load-torque profile is shown in Fig. 5. As variations, an additive offset
of ±5% PWM is applied to the VGT and EGR positions, and ±2◦ to the SOI. A
multiplicative factor of 1.05 defines the variation of the fuel mass. These variations
are referred to as the small variations in the remainder of the text. To assess the
accuracy of interpolation and extrapolation, large variations with offsets of ±8%
for the VGT, ±10% for the EGR, ±4◦ for the SOI and a factor of 1.1 for the
fuel mass are performed. Since the VGT and the EGR both dynamically affect the
burnt-gas fraction and the pressure in the intake manifold, the four cross variations
of these two actuators are additionally recorded.
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Figure 5: The desired load-torque profile and the trajectory achieved by the
testbench controller.
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For the identification of the combustion model, it would be desirable to have a
constant offset in v. However, the EGR-VGT controller cannot perfectly follow
reference trajectories for the burnt-gas fraction and the boost pressure. After initial
tests, it has been found that applying constant offsets directly to the two dynamic
controls is the best choice.

3.1 Transient air-path model refinement

The turbocharger speed and the pressure in the exhaust manifold represent the
relevant dynamics in a turbocharged engine system with EGR. The boost pressure
closely follows the turbocharger speed and the EGR mass-flow is defined, aside
from the position of the EGR valve, by the pressure ratio between exhaust and
intake manifolds. Therefore, it is sufficient to correct these two dynamics.

Since for the combustion model only the relative accuracy is of interest, it is
not necessary to require v(t) to be accurate in terms of absolute values. Rather,
the state variables that are critical for a safe engine operation should be matched
to the measured trajectories to enable an accurate limitation of these quantities
in the OCP. Since no limits on any state variables are included in the OCP as of
yet, we choose the pressures in the exhaust and intake manifolds to illustrate the
methodology. The choice of the dynamics and the state variables to be corrected is
represented by

KT
f =

[
0 0 0 0 0 1

0 0 0 1 0 0

]
, KT

g =

[
1 0 0 0 0 0

0 0 0 1 0 0

]
. (17)

The errors in the two pressures are equally weighted, i.e. bT = (1 1).
The top plot in Fig. 6 shows the measured trajectories of the intake pressure

along with the model output before and after the refinement. The refinement is
performed using only the small variations. The resulting good match for the large
variations indicates that the model errors in fact are systematic. For example, the
too fast speedup of the turbocharger predicted by the model might be caused by
the omission of the thermal models. The heat losses to the manifold walls are
neglected and consequently, the enthalpy available to the turbine is overestimated.

The bottom plot shows the difference of the variations to the reference trajectory.
Obviously, the refinement has no influence on the predicted difference. Therefore,
the refinement of the air-path model is not critical for the combustion model
but rather a tool that allows for an accurate limitation of any state variable, e.g.
maximum turbocharger speed, exhaust-manifold pressure and temperature, etc.

In the context of the generalised Kalman filter, the regularisation described in
Sec. 2.2.2 may be used to enforce smooth trajectories of the corrective variables x̃.
The demand for smooth trajectories is justified by assuming the model errors to be
of systematic nature and thus not to exhibit a stochastic or arbitrarily fast changing
behaviour. For the results presented here, a value of creg = 50 is used.
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Figure 6: Effects of the dynamic model refinement, VGT variations. Measurement
data (grey) versus model outputs (black). Line styles: reference (bold),
small variations (solid), large variations (dashed).

3.2 Static combustion model

The results presented here are all derived using the time averaging introduced in
Sec. 2.3.2. Interpolation and extrapolation is not influenced by the time averaging.
Table 2 shows the errors of the combustion model when identified using three
different data sets, namely the small variations, the small and the cross variations,
and the large variations. The figures indicate that the model identified using
the small variations is able to accurately predict the cross variations, except for
the soot emissions. Furthermore, interpolation is significantly more reliable than
extrapolation. This fact encourages the use of rather large variations and small
factors ku and kx instead of the reliance on small variations and extrapolation.

3.3 Optimal control

For the OCP, the regularisation was set to creg = 100. This choice successfully
suppresses oscillating solutions while not affecting the parts that exhibit smooth

Table 2: Static combustion model: average magnitude of the relative error in % for
the instantaneous NOx and soot emissions, and the torque Tload

ident. data: small variations small & cross vars. large variations

NOx soot Tload NOx soot Tload NOx soot Tload

small vars.: 0.14 0.89 0.09 0.70 4.45 0.25 1.14 7.70 0.75

cross vars.: 2.85 15.84 0.82 1.60 12.41 0.27 2.60 18.92 0.73

large vars.: 3.31 20.56 2.36 3.46 21.17 2.11 0.19 1.10 0.09
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Figure 7: Controls resulting from the solution of the constrained OCP.

trajectories anyways. Especially for the SOI, which has no influence on the air-
path dynamics, fast oscillations result when no regularisation is applied. The time
averaging during the identification of the combustion model has a similar effect as
the regularisation. It is left to be analysed in more detail which approach provides
the most plausible solutions and the fastest convergence of the iterative procedure.

Figure 7 shows the optimal control trajectories obtained when using the model
identified by the small variations only, or by the small and the cross variations. In
both cases, no extrapolation is performed, i.e. ku = 1 and kx = 1. The limits for
the cumulative emissions, m̂em, are chosen such that the brake-specific emissions
of the reference are maintained. The torque profile resulting from the reference
control trajectories is imposed by (7d).

The optimal control trajectories are experimentally validated on the engine
testbench. To account for possible deviations in the resulting torque, the emissions
and the fuel consumption are related to the integrated engine power. Figure 8
summarises the measured cumulative emissions and the fuel consumption.

Five runs are recorded for each set of trajectories. The average as well as the
minimum and maximum values are shown in the plots. The emissions remain
within the measurement uncertainty, while the fuel consumption is reproducibly
reduced. The soot measurement exhibits a large variability, which is also present
in the identification data. Therefore, the corresponding model is not reliable and
possibly hinders a more effective reduction of the fuel consumption. Furthermore,
due to this inconsistency, the model quality seems not to improve when including
the cross variations in the identification data.
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Figure 8: Experimental results of the first iteration. The error bars indicate the
range (minimal to maximal values) of the five measurements.

4 Conclusion

We present the numerical methods and the testbench setup required to perform an
iterative dynamic optimisation of Diesel engines over prescribed driving profiles.
One exemplary iteration of the methodology is performed and experimentally
validated. Significant progress towards lower fuel consumption while maintaining
the emission levels is observed.

Further development of the methodology will focus on the replacement of
the fast but manually calibrated, failure-prone and high-maintenance emission-
measurement devices by standard instrumentation, and on a fully automated
implementation of the iterative procedure. The availability of a fully automatic
and reliable setup allows to perform parametric studies, such as which set of
variations to perform during each iteration and how the models can make use of
data recorded during previous iterations. Furthermore, following the desired load-
torque profile more closely should be included as an additional objective of the
iterative procedure.
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