
LYAPUNOV FUNCTIONS AS THE DIVERGENCE 
FUNCTIONS FOR ENVIRONMENTAL ASSESSMENT: 

THEORETICAL BACKGROUND 

YURI A. PYKH1 & IRINA G. MALKINA-PYKH2 
1St. Petersburg Mathematical Society, St. Petersburg, Russia 

2St. Petersburg State Institute of Psychology and Social Work, St. Petersburg, Russia 

ABSTRACT 
Measures of divergence between two points that measure their discrepancy play a key role in many 
environmental problems. So, it has a great importance for more constructive and progressive 
approaches to ensure sustainability. In particular, for two probability distributions p and q , one can 

define a set of various divergence measures [ ]D p q . A divergence is not necessarily symmetric, that 

is, the relation [ ] [ ]D p q D q p   does not generally exist, nor does it satisfy the triangular inequality. 

Usually the divergence function [ ]D p q  satisfies the following conditions: (1) [ ] 0D p q  , (2) 

[ ] 0D p q  when and only when p q . Recall that, the information geometry originated from the 
geometric study of the manifold of probability distribution, has been successfully applied to many fields 
of environmental assessment. It is well known from Amari’s investigations that divergence function 
induced the information geometry and endowed it by Riemannian metric. On the other hand, 
Lyapunov–Meyer function for the special class of replicator system is the relative entropy function or 
the function of information divergence. Based on “The fundamental theorem of dynamical systems” by 
Conley and recent results of Barta et al. “Every ordinary differential equation with a strict Lyapunov 
function is a gradient system” we receive the Riemannian metric for dynamical pairwise systems on 
standard simplex and give for it a new example of divergence for different environmental problems. 
Keywords:  nonlinear pairwise interactions, replicator dynamics, Lyapunov–Meyer functions, distance 
measure, divergence, environmental assessment. 
 

“We always have to lay special emphasis on mathematical 
analogies because the concentration on them can promote the 

development of science” 
 

A.N. Kolmogorov (1957) 

1  INTRODUCTION 
In statistics and information geometry divergence or a contract function is a function that 
establishes the “distance” of one probability distribution to the other on a statistical manifold. 
The divergence is a weaker notion than that of the distance; in particular the divergence 
needn’t be symmetric and needn’t satisfy the triangle inequality. 
     Suppose n

p  is a space of all probability distributions 1( ) ( ( ),...., ( ))np t p t p t ,

1

: 0, 1,..., , 1
n

n n
p i i

i

p p i n p


 
     
 

  . Then a divergence on n
p  is a function 

[ ] : n n
p pD p q     satisfying [1]: 

1. [ ] 0D p q   for all , n
pp q   

2. [ ] 0D p q   if and only if .p q  
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     It is easy to see that function D  looks like Lyapunov functions for the systems of 
probability evolution equation. This is especially important in the view of the latest Conley’s 
results [2]. Note that the concepts of information, entropy, energy, diversity, discrepancy and 
divergence occupy a fundamental position in various fields of mathematical sciences, e.g. 
statistical mechanics, information theory and especially in the environmental assessment. 

2  LYAPUNOV FUNCTIONS 
The study of Dynamical Systems crosses interdisciplinary boundaries from ecology to 
psychology to meteorology, from chemical kinetics to population genetics, from economics 
to mechanics. A dynamical system consists of three ingredients: a setting in which the 
dynamical behaviour takes place; a mathematical rule which specifies; and an initial 
condition or state from which the system starts. 
     Conley [2] presents some significant results about invariant sets, attractor–repeller pairs, 
chain recurrence and index theory in the setting of flows on compact metric spaces. These 
results can be stated very simply. 
     Theorem 1 [3]. Any flow on a compact metric space decomposes into a chain recurrent 
part and a gradient-like part. 
     The term gradient-like suggests a one-way behaviour, a flowing downhill mathematically 
quantifiable. The idea of gradient-like dynamical system is an extension from gradient flows 
of the idea of functions that decrease on solutions, called Lyapunov functions. A dynamical 
system is called gradient-like if there is some continuous real-valued function which is 
strictly decreasing on nonconstant solutions. A system is called strongly gradient-like “if the 
chain recurrent set is totally disconnected (and consequently equal to the rest point set” [2]. 
Next we’ll use specific definition of Lyapunov function: A Lyapunov function is a 
continuous real valued function which is strictly decreasing (increasing) on orbits outside the 
chain recurrent set. This definition is an application of a refinement Uryson’s Lemma [4]. So, 
we can see that definition of Lyapunov function is very similar to definition of divergence 
functions.  
     In 1968 Meyer [5] proved that for dynamical systems whose limit sets consist of only 
isolated rest points or cycles, i.e. for Morse–Smale systems, there always exists a Lyapunov 
function. So, we’ll refer to them as Lyapunov–Meyer functions. Next result was proved in 
the article [6], and told us that if for the dynamical system a Lyapunov–Meyer function exists 
then there exists a Riemannian metric such that this dynamical system has a gradient form in 
this metric. 

3  MATHEMATICAL MODEL 
As shown in [7], the acceptance of two hypotheses about the structure and types of the 
interactions between objects in macrosystems leads to the following generalized replicator 
equations determining the evolution of the probability distributions p( )t  

     1p f Wf e p f,WfD    . (1) 

Here, we use the following notation:  f p  is the vector     1 1 ,...,f=f(p)= n nf p f p  is a 

vector, where the if  are nonlinear response functions (probability distribution functions) 

having at least continuous first derivatives and satisfying the conditions  0 0if  ,  1 1if  ,
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 for 0ip  ;    1 2f , ..., ;nD diag f f f  W is the matrix of 

interactions; and    p e,f p ,    where ,   is inner product. 

     Since p( ),e 0t   and (0) 0if   it follows that the simlex n
p  and each of its faces are 

invariant set for system (1). System (1), as well as the generalized Lotka–Volterra equations 
[8], determines the dynamics of objects with nonlinear pair interactions. The matrix W 
determines the structure of the interaction, and the response functions if determine their type. 

A brief survey of the best known systems with pair interactions is presented in [8]. 
     The elements of the matrix W are generalized interaction strengths, i.e. by analogy with 
the thermodynamics of irreversible processes, are “reasons” causing changes in the speed of 
flows [7]. 
     Let us rewrite eqn (1) as 

     1p f Wf e pD      , (2) 

where    2p p f ,Wf   . Using the terminology of the theory of neural networks, we 

refer to  p  as the energy function of the macrosystem under consideration. System (2) and 

the energy function  p  naturally determine the introduction of new additional variables: 

      1p θ pi i ix f p       1,...,i n . (3) 

Obviously,    T
1 2x , ..., σ x : 0, x 1n n

n x ix x x x     e for p σn
p . 

     The indices x  and p  are used in the notation of simplexes in order to avoid confusion. 

Consider change (3) in more detail. If this is a diffeo-morphism, then it can be regarded not 
only as a simplifying change of variables customary in the theory of differential equations 
but also as the definition of a set of quantities with particular physical meaning.  
     To go further, we need the following assertion. 
     Statement 1. System (1) is invariant with respect to the replacement of the interaction 
matrix W by a perturbed matrix   ζW W eζ pT  , where the components of the vector 

function       1ζ p p ,..., p : n n
n p      are bounded on n

p . 

     This statement was proved in [9] for the case  ζ p const . The proof given in [9] carries 

over in an obvious way to the case of any bounded functions  pi  1,2,...,i n . 

     Now we state the main for our aim result. 
     Theorem 2 [10]. If system (1) has a nontrivial equilibrium point Intp̂ n

p   and the matrix 

 T ,W W   ζ n   has 1n   negative characteristic numbers for any  ζ p n , then 

the function  

    1 ˆ

ˆ
p

i

i

pn
i

i ip

f dx
C

f x
H



  , (4) 
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where C  is a constant, is a Lyapunov–Meyer function for system (1) on Int n
p , and the 

energy function  pE of the system attains its maximum value  p̂E  as t   . 

     Consider properties of the function  pH . We begin with a quotation from [11]: “The 

most important information invariant of a pair of probability measures is relative entropy. 
This characteristic is asymmetric; therefore, we call it the information deviation of one 
distribution from the other...”. Chentsov’s book [11] was written in 1972. Since then, many 
terminological changes have occurred in this area; they are summarized in the recently 
published Dictionary of Distances [12]. We shall use the term relative entropy, or the function 
of information deviation. 
     The function  pH  with p Int n

p  attains its maximum value at the point ˆp p , where 

 p̂H C ; i.e.,  pH C  for any p p̂ , the covector of  pH is     ˆp i i iH f f p  , and 

the Hessian is     2ˆp i
i i i

i

ff f pdiagH
p

 
 
 

 


H . Since 0i if p   , it follows that the 

Hessian is negative definite, and the function  pH  is concave on Int n
p . Thus,  pH  can 

be regarded as relative entropy, or the function of information deviation between the 
distributions p  and p̂ . 

     The relative entropy  pH  introduced by us depends on the interaction matrix only via 

the equilibrium point p̂  of the system and is largely determined by the form of the response 

functions. This allows us to use relation (4) for solving the “inverse” problem of finding the 
response functions corresponding to a given relative entropy function  pH . Note that if 

1 1F:   is a monotonically increasing smooth function and 1 20, 0с c  and 3с are the 

numbers than the function F 1 2 3Н F( H(p))+c c c  is also a Lyapunov–Meyer function for 

system (1), and this function is a separated function. 
     For the next step let us introduce some auxiliary variables: 

 
1 1 0

(p) ( ) ( )
ipn n

i i i
i i

p f x dx
 

     . (5) 

     It is evident that 

i

( )
( )                1,...., ,    n

i i p
p

f p i n p
p


  


  . 

     So, our main eqn (1) maybe rewritten in the next form  

 p=P(p)= (f)П Wgrad (p)           p Int n
pD    , (6) 

where 

-1 TП (1 θ )ef  , 

is a nonortogonal projection operator П: ,n n
p p  Wgrad (p)  is w  gradient field on 

Int n
p . So, we have that 1( )D f is a diagonal (Egorov’s) Riemannian metric on Int n

p . This 

diagonal Riemannian metric is hyperbolic Poincare type metric known in statistic as Fisher 
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metric [1]. Note, that system (6) gives us also the second Riemannian metric -1p, W p on 

Int n
p . 

     So, we have two different Riemannian metrics on Int n
p  according to system (6). 

Moreover there is exists the relation between these two Riemannian metrics [13]: 

 

T

( ) ( )ˆˆH(p,p)= θθ(p) W
θ(p) θ(p)θ θ
i i i i i if p f f p f   

        
   

 
   . (7) 

Recall that due to Kingman’s result [13] ˆH(p,p)>0  if p Int n
p   and p p


. 

4  GEOMETRICAL PROPERTIES OF THE DIAGONAL  
RIEMANNIAN METRIC 

As we see we get from the dynamical system (6) a diagonal Riemannian metric. Some 
properties of such metric was received in the article [14] for the general diagonal Riemannian 
metric 

2 2 2
1 1 2 2 n

1 1 1
G(p)= , ,....,

g ( ) g ( ) g ( )n

diag
x x x

 
 
 

, 

defined on the positive octant n
  and its restriction to Int n

p . 

     So, we have from [14] 

a. Christofel’s symbols 
( )1

Г
( )

m i i
ij im ij

i i i

g p

g p p


 


  , 

where ij are Dirac measures. 

b. Geodesic equation 

1
      1,...,

( ) i i i
i i

dx a t b i n
g x

   , 

where ,i ia b are real constants. It is easy to see that this relationship is very close to the 

well-known definition of straighten dynamical systems. 

c. Null curvative 
There are shown that Riemannian manifold n

p endowed with the diagonal metric ( )G p

has null curvative [13]. This means that n
p  is a flat statistical manifold and we can use 

all results from [1] and [15] about different divergence functions. 

5  DISTANCE MEASURES 

Following Shennon information measure let us introduce  S p  as relative entropy defined 

by [16]: 
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      1 ˆ

ˆ
p p

i

i

pn
i

i ip

f dx
S H

f x

     , p Int n
p  . (8) 

     It is easy to see that 

 
1 1ˆ

ˆ 0
i

i

pn n

i i
i ip

dx p p
 

        ˆ, n
pp p  , 

and using (8) we clearly have the following relationship  

   1 ˆ

ˆ
p  

i

i

pn
i

i ip

f dx
S dx

f x

 
   

 
    1   . 

     Since, by the evident equality  p 0iS p   , with ˆp p , we have that 1  . It is clear 

that   is a type of Lagrange multiplier. Therefore: 

    1 ˆ

ˆ
p 1  

i

i

pn
i

i ip

f
S dx

f x

 
  

 
   p Int n

p  . (9) 

     The gradient of  pS with p Int n
p   is given by partial derivatives 

    
ˆ

p 1 i

i i

f
S

f p

 
    

 
, (10) 

that is strictly monotonically increasing for each 0ip  and Hessian of  pS  on Int n
p  is 

   2ˆp i
i i i

i

f
diag f f p

p
    

H . Since 0i if p    it follows that the Hessian is positive 

definite, and the function  pS  according to definition is convex on Int n
p . As observed by 

Ball and Chen [17] entropy and convexity have played an important role in many areas of 
mathematics.  
     Another very well known definition of convexity Jensen [18], Hardy et al. [19] is the next 
inequality with p,q Int n

p   

      p q q ,p q 0.qS S S      (11) 

     It is evident that the expression from left-side inequality is the Bregman divergences 
denoted by  p,qSB . This name was first given by Censor and Lent [20]. Bregman 

divergence or Bregman distance [21] is similar to a metric, but does not satisfy the triangle 
inequality nor symmetry. Using inequality (11) we can receive new weighted distance 
measure between two probability distributions 

        
1

ˆ ˆ
p,q 0.

i

i

qn
i i

S i i
i i i ip

f dx f
B p q

f x f q

 
     

 
   (12) 
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     It is obvious that  p,q 0SB   for p q , and    ˆp,p pSB S . 

     So, we can draw a conclusion that entropy-like function  pS , energy-like function 

ˆH(p,p)  and Bregman-like function  p,qSB may serve as divergence functions [ ]D p q . 

6  EXAMPLES 
A lot of different examples one can be found in the article [22]. In [23] we show how the 
logistic relative entropy works also in the case of the estimation of wastewater treatment. 
Different classical divergence functions are presented in the article [15, p. 350]. Now we add 
only few additional examples: 

1. Mahalanobis squared distance [24] we can receive if we use (3) and if W is positively 
definite matrix then from (7) it follows: 

T
M ˆ ˆ ˆ ˆ ˆD [ ] ( ) W( ) 0        , , .n

xx x x x x x x x x x       

2. Kagan divergence [25]. Let us put 1 ˆ ˆW=D ( / )f   in (7). If we take into account (3) 

then we receive 

2

K

ˆ( )
ˆ ˆD [ ]         , .

ˆ
ni i
x

i

x x
x x x x

x


    

3. Now let us consider as an example Bregman divergence (12). If we put ( )i i if p p and 

1
ˆ ip

n
 then taking into account the results on Kullback–Leibler relative entropy from 

[26] we receive 

B
=1

1
D [ ]  (ln + ).       

n
i i i

i i i

q p q
p q

n p q


   

4. Well-known case with normal distributions [27]. In this case the response function is 
the probability integral (Laplace function): 

 
2

0

( ) .
ip

x
i if p e dx   (13) 

It is obvious that (0) 0,  ( ) / 0.i i i if f p p    Since the integral in (13) cannot be express 

through the elemental functions, then all the meanings of (13) one can find in the 
corresponding tables. The more full analysis of this issue is presented in [27]. 

7  CONCLUSIONS 
In this article we discuss the most serious problems affecting sustainable development, i.e. 
the problems of different distance measures between any two objects. The concept of 
divergence for random phenomena occupies a fundamental position in various fields of 
environmental sciences. It’s clear that this problem is very important in the goal of 
environmental assessment by the evaluation and implementation of sustainable development 
alternatives that reflects both environmental constraints and opportunities [28]. In this context 
we establish the set of next important links: nonlinear pairwise interaction → generalized 
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Fisher (replicator) equations → Lyapunov–Meyer functions → relative entropy → different 
distance measures → divergence [ ]D p q .  
     In particular it follows from these links that nonlinear pairwise interaction is the origin of 
all known relative entropy functions and different divergences. 
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