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Abstract 

The automatic detection of animal movement behaviours in response to 
disturbances is considered an efficient tool for the bio-monitoring of ecosystems. 
Behaviours, however, can be difficult to analyse, due to complexity of the data. 
In this study, we characterised the movement patterns of medaka (Oryzias 
latipes) in response to low concentrations (1 mg/L) of copper ion (Cu2+) using a 
self-organising map (SOM) with movement parameters. Test specimens were 
observed individually in an aquarium (40 cm × 20 cm × 10 cm), and their 
position was detected from the side at 0.25-sec intervals using a television 
camera. Movement parameters such as speed, angle, and distance were 
calculated for 3 different segment lengths, with 3, 6, and 12 points indicating the 
duration of observation of 0.5 sec, 1.25 sec, and 2.75 sec, respectively. The 
effects of copper treatment on movement patterns of medaka were evaluated 
with different segment lengths, and the discrimination efficiency was compared. 
Our results showed that the movement activity after Cu2+ treatment decreased, 
and changes in movement tracks caused by Cu2+ treatment were identified with 
segmentation using SOM. These computational approaches could be used for in 
situ bio-monitoring and early warning systems. 
Keywords: movement pattern, response behaviour, copper, chemical treatment, 
medaka, early warning system, on-line monitoring, segment size. 
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1 Introduction 

Biological systems are composed of hierarchical structures, ranging from the 
small-scale structures of molecules and cells to the larger scale structures of 
tissues, organs, organ systems, organisms, populations, and communities. Each 
of these responds in different ways to environmental changes. To evaluate 
biological responses at the molecular or cellular level, analytical methods, 
toxicological assays, and dose mortality assays are used. Responses at these 
small-scale levels are rapid, and the analytical methods provide accurate 
information (Figure 1). However, the information provided by such studies is 
usually limited to the local level, and fails to provide a comprehensive 
representation of the impacted ecosystems on a large scale [1, 2]. For large-scale 
biological systems, assessments of biodiversity and ecosystem function are used 
to evaluate the impacts of disturbances on the target ecosystems. On such a large 
scale, responses are slow and often imprecise, but their ecological relevance is 
high due to the accumulating effects of disturbances or stresses on the system. 
 

 

Figure 1: Schematic diagram of biological assessments of disturbances at 
different biological scales. 

     Therefore, methods to link small- and large-scales studies, to achieve an 
integrative assessment of biological systems, have been developed [1, 3, 4]. 
Animal behavioural monitoring is effective for filling the gap between large-
scale and the small-scale assessments. Animal movement behaviour can be 
observed continuously.  
     For effective ecosystem management, it is useful to establish early warning 
systems for ecosystem disturbances. Accordingly, the automatic detection of 
animal response behaviours to disturbances has received considerable attention 
as an early warning system tool in aquatic ecosystems. Various methods have 
been proposed: circling paths of gametes or the meander searches by isopods [5], 
a complex directional autocorrelation function with monotonic decay in 
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interpreting movement behaviour [6], fractal dimensions of movement pathways 
[7–10], movement velocity [4], two-dimensional fast Fourier transform [1], 
hidden Markov models [11, 12], permutation entropies [13], and Shannon 
entropy [2]. 
     Although various behavioural monitoring systems have been developed, there 
are still many improvements necessary. Continuous behavioural monitoring is 
complex, because of the large number of data points provided by a continuously 
recorded time series. The behavioural data for movement tracks of animals are 
highly non-linear and variable, making it difficult to analyse data and extract 
useful information.  
     Previous studies have shown that movement parameters such as distance, 
acceleration, and speed are efficient for monitoring changes of movement 
behaviours of test animals responding to disturbances [1, 3]. Although these 
computational methods extract useful information, they require high 
computational cost and their parameters are highly condensed. Therefore, it is 
necessary to develop relatively simple methods for detecting behaviours of test 
animals in response to environmental disturbances. Furthermore, it is unclear 
how many segments in the movement tracks are necessary to efficiently detect 
the responses of animals to disturbance. A large number of segments involve 
high computational cost, and result in complex interactions between parameters. 
In this study, we aimed to 1) determine the movement behaviour of animals 
responding to a toxic substance, and 2) evaluate the effects of varying numbers 
of segments in the movement tracks on the detection efficiency after exposure to 
a toxic substance. 

2 Methods 

2.1 Test specimens and movement observation 

Medaka (Oryzias latipes) was used as the test specimen. This species is common 
and relatively easy to observe, and its general biological information is readily 
available. Medaka stock populations, obtained from the Korea Research Institute 
of Chemical Technology (KRICT), were maintained in a glass tank and were fed 
an artificial dry diet (Tetramin) under the light regime of L10:D14 (lights on, 
10:00; lights off, 20:00) at a water temperature of 23  1°C [2]. Tap water, 
dechlorinated by adding Na2S2O3 (30 mg/L) and by providing air under sunlight 
for 2 or 3 days, was used [14]. Test organisms (aged 6–12 months) were 
randomly chosen, and were placed individually in a 10-L glass aquarium (40  
20  10 cm). Copper (Cu) at a concentration of 1 mg/L was added to the 
aquarium. The LC50 was 5 mg/L [2, 15]. Twenty individuals were continuously 
observed from side view for 4 days: for 2 days prior to treatment and 
subsequently for 2 days after treatment [2].   
     Medakas were continuously observed using the automated behaviour 
observation system, which consisted of an observation aquarium, a CCD camera, 
and a computer with an A/D converter and an image recognition system 
(Figure 2). The test organisms were scanned continuously with the CCD camera, 
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and the scanned analogue images were converted to digital images using a video 
overlay board every 0.25 sec. The digital images were processed by the 
image recognition system to identify the location of the test specimen every 
0.25 sec [2]. The observation system, including the software for digital image 
processing and other mathematical analyses, was developed by the authors. 
 

 

Figure 2: Observation system for automatically recording and analysing 
movement behaviour. 

2.2 Data analyses 

Based on the movement tracks of the test specimens, movement parameters (e.g. 
speed) were selected for comparing the movement activity before and after 
copper treatment. A paired t-test was used to test the differences before and after 
treatment. Based on our experience of test specimens and the results from 
previous studies of continuous observation of response behaviours [1, 3, 16], the 
parameters of speed (mm/sec), angle (rad/sec), angle change per movement 
distance, and movement distance (mm) between segment points were measured 
for characterizing movement of the segments (Figure 3). Parameters were 
calculated at different movement lengths (number of segments); duration of 
movement was presented as 3, 6, or 9-point segments indicating 0.5 sec, 1.25  
 

 

Figure 3: Segmentation of movement tracks. 
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sec, and 2.0 sec, respectively (Figure 3). The movement distance was calculated 
each 0.25 sec; therefore, n numbers of movement distance parameters were 
obtained for n point segments tracks.  
     Average values and statistical analyses were used for quantifying the 
differences before and after treatment. Subsequently, the movement patterns 
were evaluated based on the behavioural parameters of a Self-Organizing Map 
(SOM; [17]), an unsupervised artificial neural network. The SOM, consisting of 
2 layers of input and output, performs a non-linear projection of the data in low 
dimension [17], and provides a comprehensive representation of complex data to 
allow patterning. Each layer consists of neurons with inter-connecting weight 
vectors. In the learning process, the Euclidian distances between weight vector w 
and input vector x are calculated. The output layer consists of D (150 = 15  10 
in this study) output neurons on a two-dimensional hexagonal grid. Among D 
neurons, the best matching neuron (that with the minimum distance) is chosen. 
The new weight vectors are updated for the best matching neuron and its 
neighbours according to the following equation. The weight vectors of other 
neurons are not changed.  
 

 )]()()[()()1( twtxttwtw iii     

 
where t is the iteration time, and (t) is a learning rate factor. This process 
amounts to training the network to classify the input vectors. A detailed 
description of the SOM algorithm was given in Kohonen [17] and Park et al. [1].  
     The data were proportionally scaled between 0 and 1 in the range of the 
minimum and maximum values. After training the SOM, the cluster boundaries 
on the trained maps were further determined by a hierarchical cluster analysis 
with a Ward linkage algorithm using the Euclidean distance measure. Multi-
response permutation procedure (MRPP) was conducted to evaluate the 
significance of the clusters [18]. The MRPP is a nonparametric procedure for 
testing the hypothesis of no difference between groups defined by the SOM, and 
was performed using PC-ORD Ver. 4.25 [19]. 

3 Results  

3.1 Effects of toxic chemical treatments 

Movement patterns of medakas were analyzed at 3 different lengths: 3-, 6-, 12-
point segments. Firstly, we analyzed the differences in movement parameters 
with 3-point segments, and then, the movement patterns were characterized with 
the SOM. When medaka were treated with copper, movement activity in terms 
of angle, speed, and movement distance per unit time (0.25 sec) decreased 
significantly (paired t-test, p < 0.05; Figure 4). Similar patterns were also 
observed with 6- and 12-point segments, although they are not presented in the 
figure.  
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Figure 4: Differences in movement parameters of medaka responding to 
copper treatment.  

3.2 Classification of movement patterns 

Movement patterns with behavioural parameters (speed, angel, and distance) 
were classified based on the SOM learning process. Firstly, we used the data 
from the 3-point segments for the SOM analysis. Pooled data before and after 
treatment were used in the classification of movement patterns in the SOM, and 
the SOM results showed that their occurrence patterns were clearly different 
after copper treatment (Figure 5). The SOM output units were classified into 5 
clusters (1–6) based on U-matrix and the dendrogram of the hierarchical cluster 
analysis. The classification revealed the changes in behavioral patterns caused by 
chemical treatment. Cluster 1 showed low values for speed, angle, and 
movement distances d1 and d2, indicating that movement patterns were affected  
 

 

Figure 5: Classification of movement patterns in SOM based on the 
differences of movement parameters. b) A dendrogram of 
hierarchical cluster analysis with the Ward linkage method using 
Euclidean distance. Lines with 3 points indicate typical movement 
patterns in each cluster. 
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by chemical treatment (Figure 6). Clusters 4 and 5 displayed high speed and long 
movement distances d1 and d2, representing movement patterns when untreated 
by copper. Clusters 2 and 3 showed a high value for angle and low values for 
speed and movement distance.  
 

 

Figure 6: Differences of movement parameters measured with 3 point 
segments at different clusters defined in the SOM.  
a) speed, b) angle, c) movement distance between points 1 and 2, 
and d) movement distance between points 2 and 3 in 3-point 
segments. 

3.3 Effects of segment sizes on discrimination rate 

Based on the SOM classification, movement patterns were discriminated 
according to chemical treatment at different numbers of segments (3, 6, and 12;  
y = -1.3888x + 64.915, R² = 0.9901). Correct discrimination (%) was decreased 
with increasing number of segmentations (Figure 7). At 3-point segmentation, 
correct discrimination was 61.2%, while it was 48.5% at 12-point segmentation. 
Our results showed that 3-point segmentation is more efficient to characterize the 
effects of copper on medaka, although overall discrimination rates were 
relatively low. This indicates that the 3 behavioural parameters used in this study 
(speed, angle, and distance) were not sufficient to identify the effects of copper 
treatment on medaka. It is clear that the 3-point segments of movement track are 
better than a larger number of segments. It saves computational time and cost, 
which is important for real-time early warning systems. However, it is necessary 
to investigate how the discrimination efficiency can be improved with the 
combination of other parameters.  
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Figure 7: Changes of discrimination power for the response of medaka to copper 

treatment.  

4 Conclusions 

We observed the movement patterns of medaka (Oryzias latipes) in response to 
low concentrations (1 mg/L) of copper ion using the automatic detection system 
of animal movement behaviour, and the movement patterns with behavioural 
parameters were characterized through an unsupervised learning algorithm with 
SOM. Medaka movement activity after copper treatment was decreased. 
Changes in movement tracks caused by copper treatment were discriminated 
with segmentation using SOM, and 3-point segments showed higher 
discrimination efficiency than did 6- and 12-point segments. Further studies are 
required to improve discrimination rates. Finally, in situ bio-monitoring could be 
possible utilizing computational methods with simple movement parameters and 
SOM. 

Acknowledgement 

This study was supported by a National Research Foundation of Korea (NRF) 
grant funded by the Korean government (MEST) (No. 2010-0027360). 

References 

[1] Park, Y.-S., Chung, N.-I., Choi, K.-H., Cha, E.Y., Lee, S.-K., and Chon, T.-
S., Computational characterization of behavioral response of medaka 
(Oryzias latipes) treated with diazinon. Aquatic Toxicology, 71(3), pp. 215-
228, 2005. 

[2] Ji, C.W., Kim, H., Chon, T.-S., and Park Y.-S., Computational analysis of 
movement behaviors of medaka (Oryzias latipes) in response to chemical 
and thermal stressors. Journal of the Korean Physical Society 60(4), pp. 
570-575, 2012. 

y = -1.3888x + 64.915
R² = 0.9901

0

10

20

30

40

50

60

70

0 3 6 9 12

C
o

rr
e

ct
 d

is
cr

im
in

a
tio

n 
(%

)

Numbers of Points (segments)

144  Environmental Impact

 
 www.witpress.com, ISSN 1743-3541 (on-line) 
WIT Transactions on Ecology and The Environment, Vol 162, © 201  WIT Press2



[3] Kwak, I.-S., Chon, T.-S., Kang, H.-M., Chung, N.-I., Kim, J.-S., Koh, S.C., 
Lee, S.-K., and Kim, Y.-S., Pattern recognition of the movement tracks of 
medaka (Oryzias latipes) in response to sub-lethal treatments of an 
insecticide by using artificial neural networks. Environmental Pollution 
120, pp. 671-681, 2002. 

[4] Untersteiner, H, Kahapka, J., Kaiser, H., Behavioural response of the 
cladoceran Daphnia magna STRAUS to sublethal copper stress - validation 
by image analysis. Aquat. Toxicol. 65, pp. 435-442, 2003. 

[5] Alt, W. and Hoffman, G., (Eds.) Biological Motion. Springer, Berlin, 1990. 
[6] Scharstein, H., Paths of carabid beetles walking in the absence of orienting 

stimuli and the time structure of their motor output. In: Alt, W., Hoffmann, 
G., (Eds.), Biological Motion. Springer, Berlin, pp. 269-277, 1990. 

[7] Johnson, A.R., Milne, B.T., and Weins, J.A., Diffusion in fractal 
landscapes: simulations and experimental studies of tenebrionid beetle 
movements. Ecology 73, pp. 1968-1983, 1992. 

[8] Wiens, J.A., Crist, T.O., With, K.A. and Milne, B.T., Fractal patterns of 
insect movement in microlandscape mosaics. Ecology 76, pp. 663-666, 
1995. 

[9] Alados, C.L., Escos, J.M., and Emlen, J.M., Fractal structure of sequential 
behaviour patterns: an indicator of stress. Anim. Behav. 51, pp. 437-443, 
1996. 

[10] Ji, C.W., Lee, S.H., Kwak, I.-S., Cha, E.Y., Lee, S.-K. and Chon, T.-S., 
Computational analysis of movement behaviors of medaka (Oryzias 
latipes) after the treatments of copper by using fractal dimension and 
artificial neural networks. In: eds A.G. Kungolos, C.A. Brebbia, C.P. 
Samaras and V. Popov, Environmental Toxicology. WIT Press: 
Southampton and Mykonos, pp. 93-107, 2006. 

[11] Liu, Y., Chon, T.-S., Lee, S.H., Hidden Markov Model and Self-organizing 
Map Applied to Exploration of Movement Behaviors of Daphnia magna 
(Cladocera: Daphniidae). J Korean Phys Soc, 56, pp. 1003–1010, 2010.  

[12] Liu, Y., Lee, S.H., Chon, T.-S., 2010. Analysis of behavioral changes of 
zebrafish (Danio rerio) in response to formaldehyde using Self-organizing 
map and a hidden Markov model. Ecol Model, 222, pp. 2191–2201, 2011. 

[13] Liu, Y., Chon, T.-S., Baek, H.K., Do, Y. Choi, J.H., Chung, Y.D., 
Permutation entropy applied to movement behaviors of Drosophila 
melanogaster. Mod Phys Lett B, 25, pp. 1133–1142, 2011.  

[14] Wilt, F.H. , Wessells, N.K., (Eds.), Methods in Developmental Biology. 
T.Y. Crowell Co., New York, 1967. 

[15] Us Environmental Protection Agency. 1984. Ambient Aquatic Life Water 
Quality for Copper, http://www.epa.gov/ost/pc/ambientwqc/ 
copper1984.pdf. 

[16] Ji, C.W., Lee, S.H., Choi, K.-H., Kwak, I.-S., Lee, S.G., Cha, E.Y., Lee, S.-
K. and Chon, T.-S., Monitoring of movement behaviors of chironomid 
larvae after exposure to diazinon by using fractal dimension and Self-
Organizing Map. Ecological Dynamics, 2, pp. 1-12, 2008. 

[17] Kohonen, T., Self-Organizing Maps. Springer, Berlin, 2001.  

Environmental Impact  145

 
 www.witpress.com, ISSN 1743-3541 (on-line) 
WIT Transactions on Ecology and The Environment, Vol 162, © 201  WIT Press2



[18] Mielke, E.W., Berry, K.J., and Johnson, E.S., Multiresponse permutation 
procedures for a priori classifications. Commun. Stat. Theor. M. 5, 
pp. 1409-1424, 1976. 

[19] McCune, B., Mefford, M.J., PC-ORD. Multivariate Analysis of Ecological 
Data. Version 4.41.MjM Software, Gleneden Beach, Oregon, 1999. 

 

146  Environmental Impact

 
 www.witpress.com, ISSN 1743-3541 (on-line) 
WIT Transactions on Ecology and The Environment, Vol 162, © 201  WIT Press2




