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Abstract 

Medical technology has seen impressive success in the past decades, generating 
novel clinical data at an unexpected rate. Even though numerous physiological 
models have been developed, their clinical application is limited. The major 
reason for this lies in the difficulty of finding and interpreting the model 
parameters, because most problems are ill-posed and do not have unique 
solutions. On the one hand the reason for this lies in the information deficit of 
the data, which is the result of finite measurement precision and contamination 
by artifacts and noise and on the other hand on data mining procedures that 
cannot sufficiently treat the statistical nature of the data. Within this work we 
introduce a population based parameter estimation method that is able to reveal 
structural parameters that can be used for patient-specific modeling. In contrast 
to traditional approaches this method produces a distribution of physiologically 
interpretable models defined by patient-specific parameters and model states. On 
the basis of these models we identify disease specific classes that correspond to 
clinical diagnoses, which enable a probabilistic assessment of human health 
condition on the basis of a broad patient population. In an ongoing work this 
technique is used to identify arterial stenosis and aneurisms from anomalous 
patterns in parameter space. We think that the information-based approach will 
provide a useful link between mathematical models and clinical diagnoses and 
that it will become a constituent in medicine in near future. 
Keywords: statistical cardiovascular system model, cardiovascular system 
identification, multi-channel measurement, state-space model, parameter 
estimation, Bayesian signal classification, patient-specific diagnosis. 
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1 Introduction 

Due to the high morbidity and mortality arising with cardiovascular disorders, an 
efficient and highly specific diagnosis is of paramount importance for the 
patient. There exist a variety of different diagnostic approaches that consider 
several factors and symptoms leading to a diagnosis by an exclusion principle. 
However, the symptoms are not always well-defined and differ from patient to 
patient, in other words - not every patient has distinct symptoms that allow a 
clear disease specific assignment. This demands for a high degree of expertise 
from the physician and sometimes makes the diagnosis tedious and even 
misleading diagnoses are the result. Therefore, the attempt of using physiological 
models combined with knowledge and experience of experts collected in 
databases to support the diagnosis process by computational methods seems a 
reasonable approach. The solution to a non-trivial classification task like this is 
valuable to improve diagnosis.  
     Typically traditional signal processing techniques are used to extract 
therapeutically relevant information like for e.g. the heart rate, oxygen saturation 
and the cardiac output from clinical data. Even though the information content 
within the data has grown continuously, the number of reliable procedures for 
feature extraction had not. 
     On the one hand the difficulty of information extraction of richer data sets 
into improved therapies lies in the deterministic view immanent in current 
mathematical models of physiological processes [1]. On the other hand there is a 
lack of sufficient therapeutic strategies that can handle improved diagnostic 
information. The former problem is a result of limited statistical data integration 
into the model, the latter problem is dependent on the time required to transfer 
the results into novel therapeutic strategies. 
     According to studies regarding the needs of clinical applications [2-4], we 
combine physical and physiological aspects of pathological conditions in the 
cardiovascular system with patient-specific simulations that are based on non-
invasively accessible data [1]. 
     Within this study we use two basic approaches to describe the cardiovascular 
system dynamics on a statistical basis: (i) measurement-based parameter 
estimation and (ii) model-based prediction and classification methods.  
     In the first approach, the desired parameters are estimated from physiological 
measurements using statistical inference techniques. In the current experimental 
setup the data is either obtained by a series of non-invasive multi-channel 
measurements from a specific sub-population of patients (e.g. healthy/diseased) 
or generated by invasive measurements from a fluid-dynamical cardiovascular 
simulator that models normal and pathological flow conditions. This is a very 
expensive approach, since it requires a distinct subset of specific patients or the 
construction of a fluid-dynamical system that can be used to simulate realistic 
conditions in the vasculature. Furthermore the measurements have to be acquired 
according to a standard operating procedure (SOP) and analyzed in a predefined 
statistically setting.  
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     In contrast to this, the second model-based approach is inexpensive and easier 
to perform, since the system dynamics is obtained by computational methods. 
However, the model-based approach has some limitations in representing the 
actual physical state of a real system, since the underlying processes are complex 
and the number of model parameters is large. Moreover, the choice of parameters 
in most physiological models is crucial for interpretation and prediction. Even 
though the sensitivity analysis approach allows to determine specific system 
features and to identify the critical parameters to which the system is most 
sensitive, parameter determination is difficult. Not to mention that the 
interpretation of estimated parameters can only occur on a statistical basis that is 
based on a broad patient population.  
     Within this work we combine two approaches, statistical inference methods 
that are suitable to determine model parameters and states observed in a broad 
patient population, and Bayesian classification to extract hidden information like 
for e.g. classes of diseased cardiovascular states that describe the health 
condition of specific subgroups. This combined approach leads to a novel 
statistical interpretation of cardiovascular system that optimally uses information 
of specific sub-populations for diagnostic purposes. The technique provides the 
potential to develop highly individualized therapeutic strategies – a benefit for 
the patient. 

2 Statistical model of the cardiovascular system 

In contrast to traditional cardiovascular system models we are interested in 
models that include an important feature: randomness. Randomness is 
characterized by a non-deterministic behavior that can be described by 
probability theory and the concept of random variables. Randomized processes 
are described by either time discrete or continuous functions (e.g. probability 
density functions and distribution functions). For most real world examples state 
space models are sufficient to describe the underlying dynamics. Having 
constructed such a model, the time discrete behavior of the system can be 
simulated and desired measures can be evaluated. 

2.1 Complexity reduction 

Within the model building process the complexity of the cardiovascular system 
is a critical problem that requires a tradeoff between accuracy of representing the 
true dynamic behavior and the ability to solve the model equations in reasonable 
amount of time.  
     There exist a variety of approaches to model and solve complex systems. 
Within this work we follow a very pragmatic decomposition/aggregation 
approach described in [1]. Here the complexity problem is treated by the 
construction of sub-models (channels) through the definition of specific interface 
conditions. The basic idea is to decompose the complex structure of the 
vasculature into a set of simpler sub-models being solved separately. The 
solutions are then combined to obtain an aggregate solution for the actual model. 
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     Of particular interest are simple lumped-parameter models (also known as 
zero dimensional or Windkessel models) that describe the transport of blood 
distribution within the vasculature [5]. These models where developed to provide 
answers to important questions in cardiovascular physiology that have abscond 
intuitive understanding [1]. However until now only very basic parameters can 
be estimated for individual patients, not to mention that there is no reasonable 
chance for a population-based interpretation.   
     In the following example we build a sub-model for a structure of the carotis 
bifurcation given in [6] and derive the corresponding state-space model.  

2.2 Windkessel model for cardiovascular fluid flow 

Dynamical systems are generally described by ordinary differential equations 
(ODEs) in canonical form. It has been shown, that lumped parameter models are 
reasonable approximations to describe the fluid flow in most elements of the 
cardiovascular system. Following [5, 7, 8] each segment of the arterial system 
can be modeled by a 3-element Windkessel electrical circuit analogue (see 
Figure 1).  
  

 

Figure 1: Arterial vessel segment (left) and corresponding three-element 
Windkessel electric analogue (right). 

 

Figure 2: Human carotis bifurcation and the corresponding simplified 
network structure for Ns=6. 

     In the example model discussed here, every arterial segment ݅ ൌ 1,… , ௦ܰ is 
represented by a electrical circuit consisting of a resistance and inductance in 
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series and a capacitor in parallel. The analogy relates electric current and voltage 
to arterial blood flow q and pressure p, respectively. The electrical resistances ܴ 
correspond to the viscos flow resistance, the inductances ܮ account for the blood 
inertia forces and the arterial compliances, i.e. the elasticity of the vessel walls, 
are described by electrical capacitors ܥ. The peripheral resistances ܼ for the 
number of terminating ends ௧ܰ of the network account for the viscous flow 
resistance and compliance in the microcirculation. Within the example of the 
carotis bifurcation shown in fig. 2, the number of segments is chosen to be 
௦ܰ ൌ 6 and the number of terminals is ௧ܰ ൌ 2.  

     In this fundamental form the cardiovascular system dynamics can be 
represented by a set of ݊ ൌ 2 ௦ܰ coupled ordinary differential equations of first 
order that depend on the unknown dynamical parameters λ.  
 

ሶݔ ൌ ݂ሺt, ,ݔ ሻߣ ݔ א ܴ t א ሾ ܶ, ܶ  Tሿ (1)
ሺݔ ܶሻ ൌ ݔ    

 
     The solution can be given analytically in terms of exponential functions and 
sine waves, if the right-hand side function f is linear in x. Generally the initial 
values are also unknown parameters, so that the vector of unknown parameters θ 
is:  
 

θ  ൌ ሺߣ, ሻݔ א ܴఒା (2)
 
     In analogy to Kirchhoff’s current and voltage law we obtain a system of n 
coupled ordinary differential equations for the pressure and flow: 
 

ሶଵݍ ൌ 
 െ ܴଵݍଵ െ ଵ

ଵܮ
ሶସݍ  ൌ 

ଷ െ ܴସݍସ െ ସ
ସܮ

 
 

(3)

ሶଵ ൌ 
ଵݍ െ ଶݍ
ଵܥ

ሶସ  ൌ 
ସݍ െ ሺସ െ ௨௧ሻ/ܼଵ

ସܥ
 

 

ሶଶݍ ൌ 
ଵ െ ܴଶݍଶ െ ଶ

ଶܮ
ሶହݍ  ൌ 

ଶ െ ܴହݍହ െ ହ
ହܮ

 
 

ሶଶ ൌ 
ଶݍ െ ଷݍ െ ହݍ

ଶܥ
ሶହ  ൌ 

ହݍ െ ݍ
ହܥ

  

ሶଷݍ ൌ 
ଶ െ ܴଷݍଷ െ ଷ

ଷܮ
ሶݍ  ൌ 

ହ െ ܴݍ െ 
ܮ

 
 

ሶଷ ൌ 
ଷݍ െ ସݍ
ଷܥ

ሶ  ൌ 
ݍ െ ሺ െ ௨௧ሻ/ܼଶ

ܥ
 

 

 
     According to [7], the parameters of the electric analogue circuit are 
determined from the structural and physiological parameters. Assuming Hagen-
Poiseuille flow the electrical parameters become: 
 

ܴ ൌ
݈ߥ8
ݎߨ

ସ , 

ܮ

ൌ
݈ߩ
ݎߨ

ଶ ,

ܥ

ൌ
ݎߨ2

ଶ݈
݄ܧ

 . (4) 
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     Here every vessel segment i is specified by its length ݈, its radius ݎ, the wall 
thickness ݄ and the Youngs modulus ܧ. The blood is characterized by the 
density and viscosity of ߩ ൌ 1050 ݇݃/݉ଷ and ߥ ൌ 4 כ 10ିସ ܲܽ ݏ, respectively.  
     Having defined the parameters ߣ ൌ ൫ܴ, ,ܥ ,ܮ ܼ൯, ,݅ ݆ and the pressure at the 
inlet ሺݐሻ and outlet ௨௧, the system can be numerically solved for the nodal 
pressures  and flows ݍ.  

2.3 State space model 

The state space representation is a useful notation to describe the dynamics in 
arterial networks. Besides the explicit description of the measurement process, 
statistical processes, like the measurement noise, can be described in a very 
simple and efficient way. In state space form the dynamical system is written in 
terms of input and observation vectors and the state space variables. It is 
expressed as a first order differential state equation and the observation equation: 
 

ሶ௧ݔ ൌ ݔۯ௧ିଵ  ۰u௧  w௧ (5 a)
௧ݕ ൌ ۱ݔ௧  ۲u௧  v௧ (5 b)

 
     Here ݔ௧ is the vector of state space variables, u௧ the input vector and ݕ௧ the 
observation vector. The dynamics of the system is described by the state 
dynamics matrix   א  ሺ݊ ࡹ  ൈ  ݊ሻ. The input matrix   א  ሺ݊ ࡹ  ൈ  ݅ሻ specifies 
the time dependency of the in- and outflow as boundary values, the observation 
matrix   א  ሺ݉ ࡹ  ൈ  ݊ሻ defines the observation locations, with the number of 
observations, m, and the input to observation matrix ࡰ  א  ሺ݉ ࡹ  ൈ  ݅ሻ quantifies 
the influence of the input vectors to the observation vectors (see fig. 3). In the 
current setting we use synthetic data as measurement data, so we neglect the 
noise matrix ݓ௧ and ݒ௧ in the state and observation equation respectively. The 
noise terms can be included with minimal effort if real data is available. 
 

 

Figure 3: Time discrete state space system with matrix relations between the 
state, input and observation vectors. 

     The state equation (5 a) relates the state vector x at a time t to the unknown 
parameters θ, while the observation equation (5 b) relates the state vector to the 
measured data y. The state vector ݔ௧ contains the flow and pressure functions at 
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all network locations, whereas the observation vector ݕ௧ contains the flow and 
pressure at selected nodes i, to which measurement time series are available.  
     We assume that the input pressure  is a given function of time and that the 
output pressure ௨௧ is known. In the hemodynamic system output pressure 
corresponds to the mean venous pressure, which is almost constant and has mean 
values of about 15 mmHg. For these two inputs ܽ ൌ 2, the input vector is: 
 

uሺtሻ: ൌ ൬
pሺtሻ
poutሺtሻ

൰ u א ܴ. (6)

 
     For m available observations like for e.g. pi and qi at nodes 3 and 5 in the 
network, the observation vector is 
 

:ሻݐሺݕ ൌ ൮

ሻݐଷሺݍ
ሻݐଷሺ
ሻݐହሺݍ
ሻݐହሺ

൲ ݕ א ܴ. (7)

 
     Defining the state vector ݔ:ൌ ሺq1, p1, q2, p2, q3, p3, q4, p4, q5, p5, q6, p6ሻ் leads 
to a states space system for the carotis bifurcation described in the previous 
section that is denoted by 
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     The time discrete state space equations, the parameters θ, and the input vector 
u୲ describe the time evolution of the system in form of the state space variables 
 ௧. In practical applications most of the system parameters are unknown. Furtherݔ
more the vector of state variables of the cardiovascular system cannot be 
measured directly. In the following we propose a parameter estimation method 
based on the measurements defined in the observation vector ݕ௧. Due to the fact 
that the measurements are incomplete ሺ݉ ് ௦ܰሻ the inverse problem is ill-posed.  

3 Parameter estimation in the cardiovascular system 

There are several methods to estimate unknown system parameters from time 
discrete measurements. We assume that we have measured the observation 
vector ݕሺݐሻ for discrete times, ݐ ൌ 0,… , ܶ, by a multi-channel measurement at 
locations i in the vascular network. The aim is to estimate the parameters and 
hidden signals from the measurements, in other words, we seek a solution to the 
hemodynamic inverse problem that was proposed to have infinite number of 
solutions [9]. 
     A well-established approach to determine the parameters is the maximum 
likelihood estimator. It is defined as the vector that minimizes the measurement 
likelihood L, given θ: 
 

ߠ ൌ ݃ݎܽ max
ఏ

ሻ. (8)ߠ|ݕሺܮ

 
     In other words, without assumptions about the parameter to estimate, one 
chooses the value that makes the output most likely. This maximization problem 
can be solved even if the data is high dimensional, incomplete and noisy [10]. 
Due to the fact that the ODE model is not based on a probability model we may 
assume that the data is normally distributed around the deterministic solution, so 
that the likelihood is defined in terms of a least square distance. Then the 
distance function of squared residuals between the measured data and the model 
trajectory is equivalent to the maximum-likelihood problem. In other words, 
minimizing the distance function 
 

Ξሺ݀, ሻݕ ൌሺ݀ሺݐሻ െ ,ݐሺݕ ሻሻଶߠ


ୀଵ

,



ୀଵ

 (9)

 
where ݀ are data points for the locations i, and ݕሺݐ,  ሻ is the solution of theߠ
dynamical system at times ݐଵ, … ,   is equivalent to maximizing the likelihoodݐ
function 
 

ሻߠ|ሺ݀ܮ ൌෑෑ
݁ିሺଵ ଶ⁄ ሻ൫ௗሺ௧ೖሻି௬ሺ௧ೖ,ఏሻ൯


ஊషభ൫ௗሺ௧ೖሻି௬ሺ௧ೖ,ఏሻ൯

ሺ2ߨሻ ଶ⁄ |Σ|ଵ ଶ⁄



ୀଵ



ୀଵ

, (10)
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where the scalar matrix Σ is a diagonal matrix with equal diagonal entries [11]. 
The maximization of the measurement likelihood may be obtained by two 
different approaches: application of (i) the expectation maximization (EM) 
algorithm or (ii) approximate Bayesian computation (ABC) techniques.  
     In (i) the likelihood function is maximized by the EM algorithm, which 
iteratively increases the likelihood function. This maximum typically is the 
global one, if some good initial estimate ߠሺ0ሻ is available. The initial estimate 
can gained from a classical parameter estimation procedure (see section 3.1). 
     In (ii) the likelihood function is maximized by finding a sufficient 
approximation Զሺכݕ|ߠሻ to the posterior probability distribution Զሺߠ|݀ሻ in 
Bayes’ formula  
 

Զሺߠ|݀ሻ ൌ
Զሾ݀|ߠሿԶሾߠሿ

∑ Զሾ݀|ߠሿԶሾߠሿௐ
. (11)

 
     The ABC algorithm is sample based, i.e. it generates simulation data כݕሺכߠሻ 
for parameter vectors כߠ drawn from the prior probability distribution Զሾߠሿ. The 
parameters כߠ are accepted if a distance measure ߜሺ݀, ሻכݕ   is sufficiently ߝ
small, then Զሺߠ|݀ሻ ؆ Զሺכݕ|ߠሻ and the measurement likelihood consequently is 
Զሾ݀|ߠሿ ؆ Զሾߠ|כݕሿ. 

3.1 Solution of the optimization problem 

To obtain realistic initial parameters we formulate an optimization problem that 
includes additional knowledge about the parameters as equality or inequality 
constraints. In the cardiovascular system all parameters are non-negative and 
smaller than a parameter specific upper bound, i.e. ߠ  ߠ   . Additionally weߠ
decompose the optimization problem into s optimization sub-problems for ߠ௦, 
and apply the transfer function relations between the interfaces of the sub-models 
as constraints.  
     Within this nonlinear optimization problem we seek the vector of parameters 
 :௦ for each sub-model such thatߠ
 

Minimize  Ξሺ݀௦, ௦ሻݕ (12)
subject to:    
ߠ    ௦ߠ  ߠ  

 
     Due to the nonlinearity iterative algorithms must be used to find a solution. 
For efficient optimization, at least first derivatives with respect to the parameters 
(sensitivities) should be provided. According to the large number of variables we 
decided to use two constraint optimization algorithms: (i) a weighted variant of 
Levenberg-Marquardt nonlinear least squares algorithm using parameter 
sensitivities to control the step size (SENSOP) [12] and (ii) a non-linear steepest-
descent algorithm (NLSD). The details of the optimization results are discussed 
in our previous work [1]. 
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4 Bayesian classification as concept in cardiovascular 
diagnosis 

Bayesian signal classification is concerned with two tasks: Firstly the 
identification of specific sub-populations on the basis of training data sets 
containing observations whose sub-population is known a priori and secondly 
the determination of the affiliations of observations where the identity of the sub-
population is unknown. The use of Bayesian classifiers in cardiovascular 
diagnoses is discussed in [1] in more detail. Basically the classifier learns the 
signal distribution of instances of specific diseases in a sub-population to 
determine the classification probability of unknown data sets.  
     In order to outline the classification problem, we start with the assumption 
that we have a sequence of measurements ݀ଵ, … , ݀ெ for M different patients that 
in some appropriate sense form a sampling of a specific patient population. 
Classification now means to find out which of the M patients belong to certain 
classes ࣝଵ,… , ࣝௐ. We further define the class of healthy patients by ࣝ, and the 
classes of patients that have specific diseases by ࣝ௪, in the following referred to 
as class w. The classification probability of a patient b in class w is thus the 
conditional probability of being in class w given the sequence of observed 
signals, Զሺܾ א ࣝ௪|݀ଵ:ெሻ. Using Bayes’ formula, this probability can be 
computed from 
 

Զሺܾ א ࣝ௪|݀ଵ:ெሻ ൌ
Զሾ݀ଵ:ெ|ܾ א ࣝ௪ሿԶሾܾ א ࣝ௪ሿ

∑ Զሾ݀ଵ:ெ|ܾ א ࣝ௪ሿԶሾܾ א ࣝ௪ሿௐ
. (13)

 
Here Զሺܾ א ࣝ௪ሻ denotes the prior probability of patients of class w and 
Զሾ݀ଵ:ெ|ܾ א ࣝ௪ሿ denotes the probability of measuring the signal from a patient of 
class w. While the former probability is a classical prior, the latter probability has 
to be estimated algorithmically from the sequence of observations ݀ଵ:ெ. Thus the 
classification algorithm must perform two different estimations simultaneously: 

1. Density estimation: Estimate the probability Զሾ݀ଵ:ெ|ܾ א ࣝ௪ሿ that a 
certain signal is observed from a patient of class w. 

2. Classification: Find the hidden information whether the signal of a 
patient, ݀, belongs to class w. 

     The combination of these two tasks in the sense of a joint likelihood 
optimization again leads to the EM algorithm. In other words, in every step of 
the EM iteration the density is estimated before the classification probabilities 
are evaluated. The iteration again converges if we choose appropriate initial 
values and results in the optimal densities and classifications based on the 
available observation. Consequently, the accuracy of the results increases when 
data is reintegrated. 
     The aim of the above classification algorithm is to classify measured data into 
classes with common properties – i.e. with a relation to specific diseases. These 
classes are then used to classify unknown data measured at patients with 
unknown diagnosis by means of fuzzy probabilities. As obvious from the above 
description the Bayesian classification method comprises two steps:  
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     Firstly, in the learning phase, the measurement data and known relationships 
to cardiovascular diseases (training data) are used to train the priors and densities 
needed in the EM algorithm. The probability distributions over these training 
datasets are learned from examples verified by the gold standard (valid 
diagnosis), thus allowing the generation of new relationships that describe 
disease specific classes. The gold standard relationships can include any 
properties of time series related or unrelated to a particular disease. In general, 
these gold standards are formed by data obtained for a sub-population of patients 
with known diagnosis. 
     Secondly, in the prediction phase, the classification probabilities are predicted 
by the classification algorithm based on newly acquired signals (testing data) 
without available diagnosis. The prediction is generally based on a network 
indicating how likely the observation of measurements fits to a specific class. If 
one considers this network as a connection matrix, it is just a collection of fuzzy 
like measures, each representing a probability of functional relationship between 
the measurement and the class. According to the classification probabilities the 
procedure provides a diagnostic hint about the existence of afore characterized 
diseases. In other words, the algorithm sets up a series of hypothesis, that are 
based on the prior information of a sub-population obtained in clinical 
observations, to classify the health condition of the patient. 
     The algorithmic classification procedure is as follows: 

1. Use training data ݀ଵ:ெ
ற  to determine optimal parameters ߠ, priors and 

density estimation via the EM or ABC algorithm. 
2. Classify testing data ݀ଵ:ெ

‡  via (fuzzy) classification probabilities 
Զெሺ݀ଵ:ெ

ற ሻ.  
3. Integrate testing data into training data set and re-optimize parameters. 

 
     In order to realize this approach for cardiovascular diseases we will have to 
train the algorithm on a significantly large population of patients, which is the 
next challenge we will have to face. Then the statistical classification becomes a 
method that allows us to identify cardiovascular diseases in an early state that are 
followed by therapeutic intervention convenient for individual patients. In 
contrast to other methods that determine a set of selected parameters with 
pretended relevance for diagnosis, the classification method automatically selects 
and quantifies all relevant parameters to prove a series of proposed diseases in 
the fashion of differential diagnosis. 

5 Conclusion and outlook 

Within this work we have outlined the solution of the constraint hemodynamic 
inverse problem. The proposed statistical inference approach provides various 
advantages including quantitative parameter estimates, determination of 
confidence intervals and error estimates given incomplete and noisy 
measurement data. Further more the classification algorithm quantifies all 
disease specific model parameters in terms of classes in the fashion of 
differential diagnosis. These techniques are proposed to be the basis in patient 
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specific diagnoses, because they provide a statistical framework for the 
description of the cardiovascular system allowing improved therapeutic 
interventions for individual patients. 
     Although the interdisciplinary challenges involved in the ongoing project are 
daunting, it is important to recognize the potential gains for cardiovascular 
diagnosis. However, up to now the progress has been inhibited by the lack of a 
broad data basis of non-invasive hemodynamic measurements, advanced inverse 
modeling tools and databases for large-scale data integration and classification. 
Nevertheless we are sure that the new modeling techniques will find several 
applications in cardiovascular medicine. The progress will depend on the level of 
support from funding and industry and the interest of clinicians. There are signs 
suggesting strong interest from all areas. 
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