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Abstract 

Numerical evaluation of two methods to calculate slope and intercept of end-
systolic pressure-volume relation (ESPVR) in the left ventricle is presented. The 
mathematical formalism is based on results previously published in which the 
active force of the myocardium (also called isovolumic pressure Piso) is 
introduced in the formalism describing the pressure-volume relation (PVR) in 
the left ventricle. The numerical calculation is simple and can be easily 
implemented in routine clinical work, only the ventricular pressure Pm near end-
systole needs to be estimated. A thick-walled cylindrical model contracting 
symmetrically is assumed for the left ventricle.      
Keywords: ventricular elastance, end-systolic pressure-volume relation, 
pressure-volume relation in the ventricles, peak isovolumic pressure, active force 
of the myocardium. 

1 Introduction 

In previous studies the author has stressed the importance of introducing the 
active force of the myocardium (also called isovolumic pressure Piso by 
physiologists) in the formalism describing the pressure-volume relation (PVR) in 
the ventricles [1–5]. The mathematical formalism developed was used to 
calculate the stress in the myocardium by using linear elasticity [5] and large 
elastic deformation [1–4], in this formalism the active force of the myocardium 
is modelled as force/unit volume of the myocardium generated by the cardiac 
muscle (see fig. 1).  In this study a relation derived in [2] is used to calculate the 
non-linear end-systolic pressure-volume relation (ESPVR). It is shown that this 
mathematical relation can be used to calculate in a non-invasive way the 
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intercept Vom of the ESPVR with the volume axis (see fig. 2), only knowledge of 
the volume of the myocardium Vω, the end-systolic volume Ved and the 
ventricular cavity volume Vm near end-systole are required in order to calculate 
Vom. If the ventricular cavity pressure Pm near end-systole can be estimated in a 
non-invasive way, then the different slopes of the non-linear ESPVR (see fig. 2) 
and the peak isovolumic pressure Pisom can also be calculated in a non-invasive 
way. This study focuses on a comparison between a numerical approximation 
obtained by assuming that for small z, log(1 + z)  z, with the exact expression 
using the logarithmic function. The interest of this approximation is that the 
calculations are much simpler.  
 

 

Figure 1: The left ventricle is represented as a thick-walled cylinder 
contracting symmetrically. P = ventricular pressure, Po = outer 
pressure (neglected in the calculation), a = inner radius, b = outer 
radius, h = b – a = thickness of the myocardium. A helical fibre is 
projected on the cross-section as a dotted circle. Because of the 
assumed symmetry of the contraction, a radial active force Dr(r) 
(force/unit volume of the myocardium) is generated by the 
muscular fibre. 

     Although the cardiac pressure-volume loops at different loadings appear to 
define an almost linear relationship of end systolic values, the ESPVR is 
essentially a non-linear relation (see references [6–8]).  Several approaches have 
been proposed to estimate the parameters of the ESPVR from single beat 
measurement [9, 10] (for a critical review see [10]), but none has the simplicity 
of the method presented in this study.  
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2 Mathematical model 

As in previous studies a quasi-static approximation of the ventricular contraction 
is considered (inertia forces and viscous forces neglected). Figure 1 shows a 
cross-section of the left ventricle that is modelled a thick-walled cylinder 
contracting symmetrically, a helical myocardial fibre is projected on the cross-
section as a dotted circle. It will generate a radial active fore/unit volume of the 
myocardium Dr(r), this force will develop an active pressure on the inner surface 
of the myocardium (endocardium)  given by  
 

׬  ݎ݀ ሻݎ௥ሺܦ ൌ   ഥ݄ܦ 
௕
௔  (1) 

 

     The thickness of the myocardium is given by h = b – a, a = inner radius of the 
myocardium, b = outer radius of the myocardium.D is an average radial 
force/unit volume of the myocardium calculated by applying the mean value 
theorem. We shall follow the practice of physiologists and by writing Dh = Piso, 
where Piso is the isovolumic pressure developed in a non-ejecting contraction. 
Near end-systole when the myocardium reaches its maximum state of activation, 
the equilibrium of forces on the inner surface of the myocardium in a quasi-static 
approximation can be written as follows 
 

 ௜ܲ௦௢௠ െ  ௠ܲ ൌ ଶ௠௫ ሺܧ  ௘ܸௗ െ  ௠ܸሻ                 (2) 
 
 
 

     The left hand side is the resultant pressure applied on the inner force of the 
myocardium. The right hand side is the pressure resulting from the change of 
volume from Ved (end-diastole when dV/dt = 0) to Vm when the cardiac muscle 
reaches its maximum state of activation (Vm  Ves the end-systolic volume when 
dV/dt = 0), the corresponding ventricular pressure is Pm. From fig. 2, one can 
deduce that the elasticity coefficient E2mx = tan2. The outer pressure Po in fig. 1 
is neglected.  
     If Pisom is kept constant and (Pm, Vm) is varied in eqn (2), then the point (Pm, 
Vm) will describe the ESPVR represented by the curve BDC in fig. 2, as if a 
balloon is inflated against a constant Pisom.  
    Equation (2) can be split into two equations as follows 
 
 

 ௠ܲ ൌ ଵ௠௫ ሺܧ  ௠ܸ െ  ௢ܸ௠ሻ    (3) 
 
 

 ௜ܲ௦௢௠ ൌ ௠௫ ሺܧ  ௘ܸௗ െ  ௢ܸ௠ሻ   (4) 
 
 

     The intercept Vom of the non-linear ESPVR with the volume axis is shown in 
fig. 2. From fig. 2, one can deduce that the coefficients E1mx = tan1 and Emx = 
tan. An interesting feature of the preceding equations is the introduction of the 
peak isovolumic pressure Pisom in the formalism describing the ESPVR.  
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Figure 2: Non-linear ESPVR represented by the curve BDC, D has 
coordinates (Pm, Vm). Pm is the left ventricular pressure 
(corresponding to the maximum state of activation of the muscle), 
Pisom is the peak isovolumic pressure. Emx = tan slope of BC, E1mx 
= tan1 slope of BD, E2mx = tan2 slope of DC. The slope of the 
tangent to the ESPVR at D is tan. 

3 Slopes of the ESPVR 

Unlike the linear ESPVR that is characterized by one slope, we have in fig. 2 
several slopes that characterize the non-linear ESPVR. These slopes are 
 

ଶߚ݊ܽݐ  ൌ  ଶ௠௫ = slope of the line CD (5a)ܧ 
 

ߙ݊ܽݐ   ൌ  ௠௫ = slope of the line CB (5b)ܧ 
 

ଵߚ݊ܽݐ  ൌ  ଵ௠௫ = slope of the line DB (5c)ܧ 
 

 tanγ ൌ 
ୢPౣ
ୢVౣ

 = tangent to the ESPVR BDC at point D (Pm, Vm) (5d) 
 

ଵߛ݊ܽݐ  ൌ  tangent to the ESPVR BDC at point B (0, Vom) (5e) 
 

 ଷ  = tangent to the ESPVR BDC at point C (Pisom, Ved) (5f)ߛ݊ܽݐ 
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     We give in this section an exact expression of slopes based on the cylindrical 
model of the ventricular cavity as derived in [2], we then discuss in the next 
section the numerical calculation procedures. 
 
a) From reference [2] we can write 
 

ଶߚ݊ܽݐ   ൌ  ݇௪ ሺ
ଵ

௏೘
െ 

ଵ

௏೘ା௏ഘ
൅ 

௟௢௚
ೇ೘శೇഘ
ೇ೐೏శೇഘ

  ି  ௟௢௚
ೇ೘
ೇ೐೏

 

௏೐೏ି ௏೘
)  (6a) 

 

     We use log to represent the natural logarithm, kw is a constant coefficient 
calculated by applying the mean value theorem in [2]. For small z we can apply 
the relation log (1 + z)  z, we get the following approximate expression tan2a 
 

ଶ௔   ݇௪௔ ሺߚ݊ܽݐ 
ଵ

௏೘
െ 

ଵ

௏೘ା௏ഘ
൅ 

ଵ

௏೐೏
െ 

ଵ

௏೐೏ା௏ഘ
ሻ    (6b) 

 

     The coefficient kwa corresponds to the calculation carried out when the 
approximation log (1 + z)  z is used.   
 
b) When point D moves to point B, Vm  Vom and tan2  tan. We get 
 

ߙ݊ܽݐ   ൌ  ݇௪ ሺ
ଵ

௏೚೘
െ 

ଵ

௏೚೘ା௏ഘ
൅ 

௟௢௚
ೇ೚೘శೇഘ
ೇ೐೏శೇഘ

 ି  ௟௢௚
ೇ೚೘
ೇ೐೏

 

௏೐೏ି ௏೚೘
ሻ (7a) 

 

     By applying the approximation log (1 + z)  z we get the following 
approximate expression tana  
 

௔  ݇௪௔ ሺߙ݊ܽݐ  
ଵ

௏೚೘
െ 

ଵ

௏೚೘ା௏ഘ
൅ 

ଵ

௏೐೏
െ 

ଵ

௏೐೏ା௏ഘ
) (7b) 

 

c) From eqns (4) and (7a) one can derive the following expression for Pisom  
 

 ௜ܲ௦௢௠ ൌ ݇௪ ሾቀ
ଵ

௏೚೘
െ 

ଵ

௏೚೘ା௏ഘ
ቁ ሺ ௘ܸௗ െ  ௢ܸ௠ሻ ൅ ݃݋݈ 

௏೚೘ା௏ഘ
௏೐೏ା௏ഘ

 െ ݃݋݈ 
௏೚೘
௏೐೏

ሿ (8a) 

and the approximate expression Pisoma 
 

    ௜ܲ௦௢௠௔  ݇௪௔ ሺ
ଵ

௏೚೘
െ 

ଵ

௏೚೘ା௏ഘ
൅ 

ଵ

௏೐೏
െ 

ଵ

௏೐೏ା௏ഘ
ሻሺ ௘ܸௗ െ  ௢ܸ௠ሻ  (8b)  

 

 d) We note that Pm = Pisom – (Pisom – Pm), which can be written as  
 

  ௠ܲ ൌ ሺ ߙ݊ܽݐ ௘ܸௗ െ  ௢ܸ௠ሻ െ ଶ ሺߚ݊ܽݐ  ௘ܸௗ െ  ௠ܸሻ  (9a) 
 

     By using eqns (6a) and (7a) we get 
 

  ௠ܲ ൌ ݇௪ ሾቀ
ଵ

௏೚೘
െ 

ଵ

௏೚೘ା௏ഘ
ቁ ሺ ௘ܸௗ െ  ௢ܸ௠ሻ െ ቀ

ଵ

௏೘
െ 

ଵ

௏೘ା௏ഘ
ቁ ሺ ௘ܸௗ െ  ௠ܸሻ ൅

݃݋݈                                    
௏೚೘ା௏ഘ
௏೐೏ା௏ഘ

 െ ݃݋݈ 
௏೚೘
௏೐೏

െ ቀ݈݃݋
௏೘ା௏ഘ
௏೐೏ା௏ഘ

 െ ݃݋݈ 
௏೘
௏೐೏
 ቁሿ  (9b) 

 

     By combining the logarithmic terms, we get: 
 

  ௠ܲ ൌ ݇௪ ሾቀ
ଵ

௏೚೘
െ 

ଵ

௏೚೘ା௏ഘ
ቁ ሺ ௘ܸௗ െ  ௢ܸ௠ሻ െ ቀ

ଵ

௏೘
െ 

ଵ

௏೘ା௏ഘ
ቁ ሺ ௘ܸௗ െ  ௠ܸሻ ൅

݃݋݈                                           
௏೚೘ା௏ഘ
௏೘ା௏ഘ

 െ ݃݋݈ 
௏೚೘
௏೘
 ሿ  (9c) 
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     We notice that by using the approximation log (1 + z)  z when z is small, 
eqns (9b) and (9c) give different results. We use eqn (9c) to obtain the 
approximation 
 

  ௠ܲ௔  ݇௪௔ ሾቀ
ଵ

௏೚೘
െ 

ଵ

௏೚೘ା௏ഘ
ቁ ሺ ௘ܸௗ െ ௢ܸ௠ሻ െ ቀ

ଵ

௏೘
െ

ଵ

௏೘ା௏ഘ
ቁ ሺ ௘ܸௗ െ ௠ܸሻ ൅

                                         ቀ
ଵ

௏೘
െ 

ଵ

௏೘ା௏ഘ
ቁ ሺ ௠ܸ െ  ௢ܸ௠ሻሿ  (9d) 

 

e) The slope tan1 = E1mx is calculated from eqn (3) and eqn (9a), we get  
 

ଵߚ݊ܽݐ    ൌ  
௉೘

௏೘ି௏೚೘
  (10a) 

 

ଵߚ݊ܽݐ   ൌ  
௧௔௡ఈ ሺ௏೐೏ି ௏೚೘ሻି ௧௔௡ఉమ ሺ௏೐೏ି ௏೘ሻ 

௏೘ି ௏೚೘
  (10b) 

 

     By using eqn (9c) we get 
 

ଵߚ݊ܽݐ   ൌ  ݇௪ ሾቀ
ଵ

௏೚೘
െ 

ଵ

௏೚೘ା௏ഘ
ቁ
௏೐೏ି ௏೚೘
௏೘ି ௏೚೘

െ ቀ
ଵ

௏೘
െ 

ଵ

௏೘ା௏ഘ
ቁ
௏೐೏ି ௏೘
௏೘ି ௏೚೘ 

൅

                                              
 ௟௢௚

ೇ೚೘శೇഘ
ೇ೘శೇഘ

 ି ௟௢௚
ೇ೚೘
ೇ೘

௏೘ି ௏೚೘
ሿ                                                 (10c) 

 

     By using the approximation log (1 + z)  z for small z, we obtain the 
approximation  
  

ଵ௔ߚ݊ܽݐ  ൎ
1

௢ܸ௠
െ 

1

௢ܸ௠ ൅ ఠܸ
 ൅ 

1

௠ܸ
െ 

1

௠ܸ ൅ ఠܸ
 

                                  ൅ ݇௪௔ ሾ
ଵ

௏೚೘
െ 

ଵ

௏೚೘ା௏ഘ
െ ቀ

ଵ

௏೘
െ 

ଵ

௏೘ା௏ഘ
ቁሿ

௏೐೏ି ௏೘
௏೘ି ௏೚೘

  (10d) 
 

f) In order to calculate the tangent to the ESPVR (see eqn (5d)), we calculate the 
derivative dPm/dVm from eqn (9c) to obtain 
 

ߛ݊ܽݐ  ൌ ݇௪ ሾ2 ቀ
ଵ

௏೘
െ

ଵ

௏೘ା௏ഘ
ቁ ൅ ቀ

ଵ

௏೘
െ

ଵ

௏೘ା௏ഘ
ቁ ቀ

ଵ

௏೘
൅

ଵ

௏೘ା௏ഘ
ቁ ሺ ௘ܸௗ െ ௠ܸሻሿ (11)   

 

g) We obtain tan1 (see eqn (5e)) by letting Vm  Vom in eqn (11), we get    
 

ଵߛ݊ܽݐ ൌ ݇௪ ሾ2 ൬
1

௢ܸ௠
െ

1

௢ܸ௠ ൅ ఠܸ
൰ ൅ 

                                                      ቀ
ଵ

௏೚೘
െ

ଵ

 ௏೚೘ା௏ഘ
ቁ ቀ

ଵ

௏೚೘
൅

ଵ

௏೚೘ା௏ഘ
ቁ ሺ ௘ܸௗ െ ௢ܸ௠ሻሿ  (12) 

 

     We obtain tan3 (see eqn. (5f)) by letting Vm  Ved in eqn. (11), we get 
 

ଷߛ݊ܽݐ   ൌ ݇௪ ሾ2 ቀ
ଵ

௏೐೏
െ

ଵ

௏೐೏ା௏ഘ
ቁሿ (13) 

4 Numerical application 

The numerical application is based on the experimental data published by Burns 
et al. [11] for experiments on dogs. The values of Ved, Ves  Vm, Vω are given in 
[11] as well as the maximum left ventricular pressure Pmax. We have assumed 
that the pressure Pm near end-systole, corresponding to the maximum state of 
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activation of the muscle, can be estimated from Pm  Pmax/1.2 approximately. 
These values are shown in Table 1. 

Table 1:  Result of the calculation of Vom and Pisom by two different methods. 

      Exact Approximate 
 Pmax mass Ved Vm Pisom Vom Pisom Vom 
 mmHg gr. ml ml mmHg ml mmHg ml 
1 113 73 17.7 5.6 191.92 3.18 180.78 3.34  
2 144  30.3 4.7 241.84 2.44 231.09 2.57 
3 144  49.2 8.0 239.30 4.21 227.81 4.43 
4 109 136.4 23.8 9.7 186.04 5.86 175.30 6.11 
5 139  41.0 19.7 233.76 12.61 219.47 13.05 
6 155  56.5 27.2 258.56 17.51 241.94 18.11 
7 103 91.4 34.3 27.0 171.36 22.16 165.04 22.34 
8 142  49.9 38.1 234.85  30.72 224.72 31.01 
9 155  63.3 50.4 255.80  41.84 245.53 42.15 
10 115 123       24.5 11.4 195.41  7.19 184.09 7.45  
11 133  49.5 40.6 221.07  34.31 213.89 34.51 
12 135 138.8 38.5 23.8 226.67  16.93 214.68 17.31 
13 149  52.3 29.6 248.74  20.28 233.93 20.82 
14 153  70.0 29.7 254.08  18.42 237.03 19.14 
15 101 155.9 56.2 34.0 168.68 24.00 159.17 24.55 
16 150.4  87.0 55.9 248.39 40.88 234.06 41.66 
         

end-systolic pressure Pm = max. pressure Pmax/1.2; myocardial volume in ml 
Vω = mass/density, density = 1.055 g/cm3; data for Pmax, mass, Ved and Vm taken 
from Burns et al. [11]. 

4.1 Calculation of Vom 

 

     The intercept Vom with the volume axis of the nonlinear ESPVR can be 
calculated from the three following approximate relations. At point B 
(coordinates (0, Vom)) on the ESPVR (see fig. 2) we have 
 

ଵߚ݊ܽݐ   ൎ ሺߛ݊ܽݐଵ ൅  ሻ/2  (14)ߙ݊ܽݐ 
 

 At point D (coordinates (Pm,Vm)) (see Fig. 2) we have 
 

 ߛ݊ܽݐ   ൎ ሺߚ݊ܽݐଵ ൅  ଶሻ/2 (15)ߚ݊ܽݐ 
 

At point C (coordinates (Ved, Pisom)) (see Fig. 2) we have 
 

ଶߚ݊ܽݐ    ൎ ሺߛ݊ܽݐଷ ൅  ሻ/2  (16)ߙ݊ܽݐ 
 

     It should be noticed that kw simplifies on both sides of eqns. (14) to (16), so 
that only Ved, Vm  Ves, and Vω are needed to calculate Vom. The calculation is 
done by using Newton-Raphson method (see Appendix). It has been verified that 
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the three equations give the same result for Vom. Figure 3 shows the result of 
calculating Vom by using eqn (16) with the exact expressions (eqns (6a), (7a) and 
(13)), and the approximate expressions (eqns (6b), (7b) and (13)), the maximum 
error between the two approaches is of the order of 5.5%.   

 

Figure 3: Vom (ml) is the intercept of the ESPVR with the volume axis, 
calculation of Vom is done by using the approximate relation  
log (1 + z)  z (horizontal axis), and without using this 
approximation (vertical axis). The percentage relative error is 
shown on the right side (vertical axis).   

4.2 Calculation of the coefficient kw 

The values of Ved, Vm   Ves, Vω,Vom and Pm are needed to calculate the 
coefficient kw from eqns (9c) and (9d), the results are shown in fig. 4. The 
maximum relative error, due to the approximation log(1 + z)  z, for the 
calculation of kw is of the order of 17% (see fig. 4).  

4.3 Calculation of the tangents  

Because of space consideration only the results of the calculation of the tangents 
tan1 and tan are shown in figs. 5 and 6. On the horizontal axis we have the 
results obtained by using the approximation log(1 + z)  z, on the vertical axis 
we have the results obtained without using this approximation. The right hand 
side shows that the maximum error in all these cases is of the order of 10%.    
     The results for tan and tan2 are similar.    
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Figure 4: The coefficient kw (mmHg) is calculated by using eqn (9d) 
(horizontal axis), and by using eqn (9c) (vertical axis); % error = 
100*(kw – kwa)/kw is shown on the right side (vertical axis).     

 

Figure 5: The tangent tan  is calculated by using eqn (6b) (horizontal axis), 
and by using eqn (6a) (vertical axis); % error = 100*(tan - 
tana)/tan is shown on the right side (vertical axis).  
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Figure 6: The slope tan1 is calculated by using the approximate eqn (10d)  
(horizontal axis), and by using eqn (10c)  (vertical axis); % error = 
100*(tan1 - tan1a)/tan1 is shown on the right side (vertical axis).     

 

Figure 7: The peak isovolumic pressure Pisom (mmHg) is calculated by using 
the approximate eqn (8b) (horizontal axis), and by using eqn (8a) 
(vertical axis); % error = 100*(Pisom – Pisoma)/Pisom is shown on the 
right side (vertical axis).     
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Figure 8: Variation of (Pm, Vm) along ESPVR using exact formula x (eqn. 9c) 
and approximate formula * (eqn. 9d) for three experiments taken 
from Table 1. 

4.4 Calculation of Pisom 

The calculation of the peak isovolumic pressure Pisom by using eqns (8a) and (8b) 
is shown in fig. 7. The maximum relative error in using the approximation log(1 
+ z)  z for the calculation of Pisom is of the order of 7%.      
 

4.5 ESPVR 

The calculation of the ESPVR was done by using eqns. (9), eqn. (2) can be used 
to verify the results. In the calculation of Fig. 8, Vm is varied from Vom to Ved and 
Pm is calculated by using eqn (9c) for the exact value (x) and eqn (9d) for the 
approximate value (*) corresponding to the approximation log(1 + z)  z. From 
Table 1 we see that we have  

Vm varies from Vom = 3.34 ml to Ved = 17.7 ml for experiment 1. 
Vm varies from Vom = 22.34 ml to Ved = 34.3 ml for experiment 7. 
Vm varies from Vom = 17.31 ml to Ved = 38.5 ml for experiment 12. 

 
     Only the results for three experiments are shown in a way not to overload the 
figure. The results of Fig. 8 show that the volume intercept Vom is not very much 
affected by the approximation log(1+z)  z , and similarly for the peak 
isovolumic pressure Pisom.   
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5 Conclusion 

We have investigated the possibility to use the approximation log(1 + z)  z for 
small z in the calculation of different parameters used to describe the non-linear 
ESPVR. The result of this study indicates that this approximation seems to have 
small effect on the calculation of Vom or Pisom, but the error in the calculation of 
the slope to the ESPVR is relatively larger.   

Appendix 

The Newton-Raphson Method is used to solve  Equation (16). By using the 
approximation log(1 + z)  z we get 
 

 1 െ
௏೘ሺ௏೘ା௏ഘሻ

௏೐೏ሺ௏೐೏ା௏ഘሻ
ൌ

௏೘ሺ௏೘ା௏ഘሻ

௏೚ሺ௏೚ା௏ഘሻ
െ 1 (A1) 

 

     By writing  
 

ݔ  ൌ
௏೚
௏೘
ݕ             ൌ  

௏೚ା௏ഘ
௏೘ା௏ഘ

  (A2) 
 

then eqn. (A1) can be written in the form 
 

 ݂ሺݔ, ሻݕ ൌ   ቂ2 െ
௏೘ሺ௏೘ା௏ഘሻ

௏೐೏ሺ௏೐೏ା௏ഘሻ
ቃ ݕ ݔ  െ 1 (A3) 

 

The two eqns (A2) combine to give 
  

 ݃ሺݔ, ሻݕ ൌ ݕ
௏೘ା௏ഘ
௏ഘ

െ  ݔ 
௏೘
௏ഘ
െ  1 (A4) 

 

     We start with an approximation xo and yo to the solution of Eqs A3 & A4. A 
new approximation xn, yn is calculated from the relation 
 

ቂ
݊ݔ
ቃ݊ݕ ൌ   ቂ

݋ݔ
ቃ݋ݕ െ ܬ

ିଵ ൤
݂ሺ݋ݔ, ሻ݋ݕ
݃ሺ݋ݔ, ܬ   ሻ൨,    with݋ݕ ൌ   ቎

డ௙

డ௫

డ௙

డ௬
డ௚

డ௫

డ௚

డ௬

቏            (A5) 

 

     J-1 is the inverse of J. The MATLAB code is shown below, one can verify that 
the calculated values vom1 and vom2 representing Vom are equal. 
 
function [vom1,vom2] = Calcul3Vo(ved,vm,vw)    
%  ved = end-diastolic volume;  vm = end-systolic ventricular  volume  
%  vw = volume of the myocardium;  xo, yo initial approximations 
xo = 2/vm;   yo = (xo*vm  + vw)/(vm  +  vw);    
epsx = 1.0;   epsy = 1.0;   count = 0; 
while ((epsx >0.001) || (epsy >0.001)) 
Ko = 2 - (vm/ved)*(vm + vw)/(ved + vw); 
fxy = Ko*xo*yo - 1;  
gxy = yo*((vm + vw)/vw) - (vm/vw)*xo -1; 
dfx = Ko*yo;    dfy = Ko*xo; 
dgx = - vm/vw;    dgy = (vm + vw)/vw; 
dlt = dfx*dgy - dfy*dgx; 
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xn = xo - (dgy*fxy - dfy*gxy)/dlt; 
yn = yo - (-dgx*fxy + dfx*gxy)/dlt; 
epsx = abs(xn - xo);  epsy = abs(yn - yo); 
xo = xn;  yo = yn; 
count = count + 1; 
if (count > 15) 
epsx = 0; epsy = 0; 
end 
end 
vom1 = xo*vm;  vom2 = yo*(vm + vw) - vw; 
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