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Abstract

The availability of information on the population’s exposure to the biological
agents is crucial for characterising the risks of associated food-borne pathogens.
Unfortunately, the available exposure data are insufficient to assess the public
health impact of pathogens. Effective dose-response models are required to eval-
uate the risks. The growth of the micro-organisms in the food is also important.
The prediction of the microbial population in food plays important role in finding
the risk of certain adverse effects on human population. This study combines the
stochastic growth models with the dose-response models to find the risk of illness
in consumers due to the consumption of contaminated food.
Keywords: stochastic model, listeria, probability of illness.

1 Introduction

The consumption of chilled and frozen food products is growing continuously due
to the changes in society, whereas food safety and control are of great concern
for consumers. The reinforcement of confidence in chilled and frozen food prod-
ucts is of high priority for all involved in food manufacturing, trade, logistic and
distribution.

A quantitative microbiological risk assessment (QMRA) is necessary to assure
high quality food in the society. It is also crucial to become more knowledgeable
about the consequences of infectious food-borne diseases. Listeria monocytogenes
(Lm) is one of the most virulent food-borne pathogen affecting the health of many
consumers every year [1].

The emergence of listeriosis can be attributed to many factors, chief among them
being the change in food production and consumption. The tendency to preserve
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foods for longer time through chilling or freezing is one of them. Also, the ready-
to-eat, fresh-cooked-taste foods that require no or little cooking is a major factor.

L. monocytogenes has a higher case fatality rate (20–30%) [2], compared to
the other pathogens, even though other pathogens account for higher morbidity.
The increasing number and cost of food-borne outbreaks and illnesses justifies the
quantitative approach to assess the risk of infection from food-borne pathogens.

2 Mathematical model

The mathematical modelling of microbial growth is a three step process. Firstly,
in the primary model one needs to fit experimental data into the mathematical
formulae or equations. This gives us the values of the parameters in the model for
the specific species and food type. In the second step, the dependency of model
parameters with temperature with the help of a secondary model are determined.
Finally, the model is tested by comparing to the experimental data taken from a
dynamic temperature condition.

2.1 Primary model

Our model extends from the robust deterministic model of Baranyi and Roberts [3].
This model could be used for different types of micro-organisms in different food
types [4]. The model is described by the following set of differential equations
with appropriate initial conditions [5–7].

dq(t)
dt

= νq(t), (1)

dN(t)
dt

= µ0(t)α(t)
(

1 − N(t)
Nmax

)
N(t); (2)

where α(t) = q(t)
1+q(t) , and the initial conditions are q(0) = q0, N(0) = N0.

Here q0 and q(t) are the quantities which are related to the critical substance
necessary for growth and characterize the physiological state of the culture in the
moment of inoculation and later time, respectively. µ0(t) is the specific growth
rate, expressed in [h−1] (per hour), dependant on the temperature. The concentra-
tions for the initial, maximal and actual cells are denoted by N0, Nmax and N(t)
respectively. These values are expressed in colony forming units per gram (cfu/g).

The adjustment function, denoted by α(t), takes into account the lag phase of the
culture during which the population adapts to the new environment. The relative
growth rate, denoted by ν, determines the quickness of the transition from the
lag phase to the exponential phase. The growth of the bacterial culture is a result
of production of the critical substances by certain enzymatic reactions and it has
been assumed that after inoculation, the critical substance increases at the same
specific rate as the cells in the exponential phase [6]. It also suggests that the
specific growth rate for physiological quantity q(t) is equal to the relative growth
rate of the cells. i.e., ν = µ0.
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The specific growth rate depends on certain environmental conditions. viz., tem-
perature, pH, salt content, water activity, etc. This paper only considers the depen-
dance of the temperature on specific growth rate. The other parameters are taken
as steady throughout the process. The dependance of temperature for the specific
growth rate ensures the inclusion of the dynamical temperature conditions in equa-
tions (1) and (2). The equation parameters Nmax and q0 are constant.

Taken into account the temperature variation in time, described by the tempera-
ture profile T (t), equation (1) after integration becomes [8],

q(t) = q0 exp
(∫ t

0

µ0(T (t1))dt1

)
; (3)

and equation (2) after integration becomes,

y(t) = y0 + A(t) − ln
(

1 +
exp(A(t)) − 1

exp(ymax − y0)

)
(4)

where A(t) =
∫ t

0
µ0(T (t1))α(t1)dt1, y(t) = ln(N(t)), y0 = ln(N0), ymax =

ln(Nmax).
The quantity y(t) is the natural logarithm of the cell concentration N(t) as seen

in the above equation (4). The function A(t) expresses a delay in growth during
the transitions from lag phase to exponential growth phase. The increment of the
critical substance given by q(t) in (3) determines these transitions of the growth
phases.

The quantity h, defined by h = ln
(
1 + 1

q0

)
, has been used for more numerical

stability purpose in the practical calculations, instead of q0.
Using the new relation between h and q0, Baranyi and Roberts model can be

expressed by the following equation:

y(t) = ymax + ln
(

1 − exp(−h) + exp(µ0t − h)
exp(ymax − y0) + exp(µ0t − h) − exp(−h)

)
. (5)

2.2 Secondary model

The dynamic temperature conditions are achieved through the temperature depen-
dance of the growth rate. There are a large number of models which exist for the
growth-temperature relation. The most appropriate model is provided by [9]. The
empirical formula is as follows:

√
µmax = b(T − Tmin), (6)

where b is a model parameter, expressed in [h− 1
2 ◦C−1]. Tmin is the theoreti-

cal minimum temperature that is required for the micro-organisms to grow. Note
that, this model is only valid for the temperature range [Tmin, Topt] where Topt

is the optimal temperature for microbial growth. It is also possible to include
other environmental parameters, such as pH, water activity, salt content, etc., in
equation (6).
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2.3 Stochastic model

The microbial growth and concentrations of the population are largely affected
by many environmental, biological and other parameters during the time. These
parameters are also very much intrinsic for each supply chain and the type of
food the micro-organism has to grow. The mathematical model, therefore, need
to include the uncertainty in measurement data and variability in the microbial
population.

The stochastic model includes the probability component in the model param-
eters and results in a probability, or probability distribution function (PDF), at a
time instant. The probabilistic components, uncertainty in measurement and the
variability in the population, could be considered as overall stochastic component
or could be individual stochastic components in the model [10–12].

The random fluctuation in the growth rate can be introduced to the model by
adding a white noise on the deterministic expression for the specific growth rate.
The expression is as follows:

µs(T (t)) = µ0(T (t)) + σζ(t), (7)

where σ is a noise coefficient which describes the noise influence of the stochastic
growth rate, ζ(t) is the white noise, µs and µ0 are the stochastic and deterministic
growth rates respectively, which of course depend on the temperature variation in
time.

Substituting µ0 by µs in the deterministic model differential equation (2), we
get the following stochastic differential equation:

dN(t)
dt

= µs(t)α(t)
(

1 − N(t)
Nmax

)
N(t);

dN(t)
dt

= µ0(t)α(t)
(

1 − N(t)
Nmax

)
N(t) + σζ(t)α(t)

(
1 − N(t)

Nmax

)
N(t);

dN(t) = µ0(t)α(t)
(

1 − N(t)
Nmax

)
N(t)dt + σα(t)

(
1 − N(t)

Nmax

)
N(t)dW,

(8)

where W (t) is the Wiener process. Here, our assumption for σ is that it is inde-
pendent of temperature throughout the process.

The solution of the stochastic differential equation (8) could be expressed by
using the Itó integral formula. Applying the Itó integration on the equation we get
the following:

N(t) = N0 +
∫ t

0

µ0A(N(s), s)ds +
∫ t

0

B(N(s), s)dW (9)
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where

A(N(t), t) = α(t)
(

1 − N(t)
Nmax

)
N(t), (10)

B(N(t), t) = σA(N(t), t). (11)

The Itó integral property also ensures us the mean value of the Wiener process
term, rightmost in the right hand side of equation (9), is equal to 0 (zero). Hence
the expected value of the microbial cells will be:

E(N(t)) = N0 +
∫ t

0

E(A(N(s), s))ds, (12)

E

(∫ t

0

B(N(s), s)
)

dW = 0. (13)

This implies that the mean value of the cell concentration in stochastic model (8)
is exactly the same value as the mean value of the concentration in deterministic
model (2).

We know that the initial concentration of the microbes can also be noisy. It
is also known that the pathogenic micro-organisms are found in the food very
rarely. The non-frequent presence of the pathogens in the food leads us to use a
probabilistic initial concentration in the model.

Hence N0 is substituted by the probability distribution function P (Nmin), where
Nmin is the minimum threshold for the culture population that can be detected.
Thus the equation (9) becomes

N(t) = P (Nmin) +
∫ t

0

µ0A(N(s), s)ds +
∫ t

0

B(N(s), s)dW. (14)

3 Dose-response model

A dose-response model is defined by a mathematical function that takes the mea-
sure of dose and yields the probability of a particular adverse effect. Of course,
this function is bounded by [0, 1]. In our case, we are interested in the probability
of illness after a product is consumed. There are several dose-response models for
microbial risk assessment, see [13, 14].

Some dose-response models are summarised in the following equations:

Pi(d) = 1 − exp(−rd), (15)

Pi(d) = 1 −
(

1 +
d

β

)−α

, (16)

Pi(d) = 1 −
(

1 +
db

β

)−α

, (17)

Pi(d) = 1 − exp(− exp(a + bf(d))). (18)
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These formulae are also known as Exponential, Beta-Poisson, Weibull-Gamma
and Gompertz models respectively.

In this study we have chosen Beta-Poisson model since the model parameters
are known from the available literature [2].

4 Numerical results

The procedures for the modelling are taken by following steps. Firstly, laboratory
experiment data were fitted with the primary model to find the model parameters
for Baranyi-Roberts model, viz., y0, ymax, µmax and h shown in the equation (5).
The non-linear regression was performed by using the free software Qtiplot.

The model parameters have to be obtained for the standardised initial physiolog-
ical state also. i.e., the value of h must be same for all of the different temperature
measurements. For this purpose, the average value 〈h〉 is obtained for different
temperatures [4]. This assumption is followed from the measurement procedures
which should be standard for initial physiological state of the cells for different
temperatures during the static measurements [4].

Therefore, the model parameters have been recalculated by fitting the experi-
mental data into the model keeping the quantity 〈h〉 fixed. This step provides the
required parameters for the model more accurately.

The specific growth rate µmax found from this fitting is next used in the sec-
ondary model (6) to find the temperature dependance.

After all the model parameters are found by the regressions, the model runs
for dynamic environmental conditions. The temperature variations are taken into
account as a vector of temperature profile in time.

The second order Milnstein Algorithm is used in the Monte Carlo simulation to
solve the stochastic equation (14).

The number of simulations was fixed to 10,000 iterations in order to obtain
the probability distribution function for cell numbers at different time instants. By
minimising the mean square root error of standard deviation between measure-
ments data and the stochastic model, the noise parameter σ is obtained, while the
Poisson distribution functions are used for the initial bacterial count.

4.1 Data collection

The experimental laboratory data used in this paper were obtained in Atlantic cod
(Gadus morhua) samples prepared from fresh fillets. The L. monocytogenes strain
used for spiking originated from an Icelandic fish product and it was pre-cultured
twice in Nutrient broth (Difco, BD, USA) at 20◦C following a two-step procedure
(24 h and 48 h). Cod pieces of 50 g were aseptically transferred to plastic bags
(PET12/LLDPE50, Plasprent, Iceland), spiked under laboratory conditions (400–
1000 cells/g) and stored aerobically. Listeria enumeration was done on Modified
Oxford agar (Difco), following incubation at 35–37◦C (48 h). The growth of Lis-
teria m. was followed at several static temperatures i.e., −2◦C, 0◦C, 2◦C, 4◦C,
5.3◦C, 6◦C, 8◦C, 9.8◦C and 14.6◦C.
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Figure 1: The temperature profile.

4.2 Figures

The variable temperature profile that is used in this study is shown in Figure 1.
Figure 2 shows the stochastic growth of Listeria monocytogenes when growth

rate is noisy. i.e., the initial population is known and has not been considered by
probability distribution function. Figure 3 shows the stochastic growth when only
initial count is taken as stochastic, keeping the growth rate deterministic. Figure 4
shows the stochastic growth when both initial population and growth rate are taken
as stochastic values. Just few curves are shown here rather than the 10,000 obtained
in the experiments.

Figures 5–7 show the probability distribution at different times.
It can be easily seen that the spread of the distribution function increases with

time.

4.3 Illness risk

The probability of illness has been calculated from the models and is shown in
table 1. It has been found that probability of getting illness increases along with
time, as expected. Note that, when initial population is not noisy, a pre-defined
value for N0 has been used. In this study, the value of N0 in this case is defined as
ln(N0) = 5.3.

5 Conclusion

A stochastic mathematical model for microbial growth under dynamic tempera-
ture conditions is considered. The Baranyi and Roberts model is used as primary

Environmental Health Risk V  285

 © 2009 WIT PressWIT Transactions on Biomedicine and Health, Vol 14,
 www.witpress.com, ISSN 1743-3525 (on-line) 



 2

 2.5

 3

 3.5

 4

 4.5

 0  20  40  60  80  100  120  140  160  180

lo
g

(N
)

time, h

Figure 2: Growth curves of Lm while growth rate is noisy.
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Figure 3: Growth curves of Lm while initial population is noisy.

Table 1: Probability of illness after different times.

Probability of Illness %

time, h stochastic µ only stochastic N0 only combined stochastic

60 0.07761 0.00203 0.00205

90 0.09705 0.00279 0.00281

119 0.15704 0.00595 0.00589

180 0.41977 0.07787 0.07172
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Figure 4: Growth curves of Lm while both initial population and growth rate are
noisy.
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Figure 5: Probability distribution function at different times, when only growth
rate is considered noisy.

model. The square root model is used as a secondary model to describe the depen-
dence of the specific growth rate on the temperature. The stochastic fluctuations
of the specific growth rate are included using the white noise and correspond-
ing stochastic differential equation is obtained. Only overall stochastic variation
is considered without distinguishing between uncertainty, which is due to the in-
homogeneity in cell population, and variability. However, the initial population
variation is taken into account and included in the stochastic model. By applying
the developed stochastic model the possible different growth paths under dynamic
temperature conditions were obtained.
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Figure 6: Probability distribution function at different times, when only initial pop-
ulation is considered noisy.
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Figure 7: Probability distribution function at different times, when both initial pop-
ulation and growth rate are considered noisy.

The second order Milstein Algorithm is used in the Monte Carlo (MC) simula-
tion to solve the considered stochastic differential equations. The histograms for
microbial concentration at different times under constant temperatures as well as
under dynamical temperature were obtained. It is shown that by using the devel-
oped stochastic model, the possible infection probability can be predicted. The
developed model can be used in the QMRA of possible contamination of food
products.
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