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Abstract 

Researchers typically tackle questions by constructing powerful, highly-
replicated sampling protocols or experimental designs.  Such approaches often 
demand large samples sizes and are usually only conducted on a once-off basis.  
In contrast, many industries need to continually monitor phenomena such as 
equipment reliability, water quality, or the abundance of a pest.  In such 
instances, costs and time inherent in sampling preclude the use of highly-
intensive methods.  Ideally, one wants to collect the absolute minimum number 
of samples needed to make an appropriate decision.  Sequential sampling, 
wherein the sample size is a function of the results of the sampling process itself, 
offers a practicable solution.  But smaller sample sizes equate to less knowledge 
about the population, and thus an increased risk of making an incorrect 
management decision.  There are various statistical techniques to account for and 
measure risk in sequential sampling plans.  We illustrate these methods and 
assess them using examples relating to the management of arthropod pests in 
commercial crops, but they can be applied to any situation where sequential 
sampling is used. 
Keywords:  binomial, enumerative, risk, sampling plan, sequential sampling, 
Taylor’s power law, Wald’s sequential probability ratio test. 
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1 Introduction: constructing sequential sampling plans 

Sequential sampling is popular in applied disciplines such as agricultural 
entomology as it demands the collection of the minimum number of samples 
necessary to make a pest management decision.  Surveying crops is time-
consuming and expensive, and growers cannot afford the luxury of a highly-
intensive sampling programme.  In sequential sampling, surveying continues 
until a predefined stop-rule is satisfied.  That is, the ultimate sample size is 
determined by the results obtained as sampling progresses. 
     The two most commonly-used types of sequential sampling plans are the 
enumerative and the binomial.  In the context of applied entomology, 
enumerative plans involve counting individual insects so as to obtain an estimate 
of the population’s density.  This estimate is then compared to an action 
threshold (AT).  The AT represents the population density above which the 
grower will employ a control measure, such as pesticide application.  In contrast, 
binomial plans only require one to record whether or not the number of insects 
on each sampling unit exceeds a predefined tally threshold (usually zero, hence 
the alternative name presence-absence sampling, Hepworth and McFarlane 
[1,2]).  The stop-rule incorporates the AT, and upon cessation of sampling the 
user is informed as to whether or not action is required. 

1.1 Enumerative sampling plans 

As explained by Karandinos [3], the minimum sample size (nmin) required for a 
survey can be adequately approximated as 
 

22
min )( xDsn =                                           (1) 

 
where s2 and x  are the sample variance and sample mean respectively, and D is 
the nominal, i.e. desired, level of precision (expressed as xxσ , where xσ  is the 
standard error of the mean).  Prior to sampling, however, we do not know x , s2, 
or xσ , so we cannot determine nmin.  A possible solution would be to conduct a 
pilot survey before each sampling event so that these parameters could be 
estimated.  This would plainly be impractical for routine sampling programmes.  
The problem can be resolved through the construction of a sequential sampling 
stop-boundary.  Such a boundary is a function of the variance-mean relation of 
the pest (in effect, its spatial distribution) and the desired level of precision of the 
survey.  Two stop boundaries have been proposed: Kuno [4] and Green [5]. 
     The foundation of Kuno’s [4] approach lies in the use of Iwao’s [6] 
patchiness regression technique to characterise the variance-mean relation.  Iwao 
modelled the relation between the sample mean ( x ) and Lloyd’s [7] mean 
crowding index ( *x ), which is calculated as 
 

( )[ ]12 −+=∗ xsxx                                              (2) 
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Iwao’s patchiness regression, whereby *x  is regressed against x , is thus  
 

xx βα +=∗                                              (3) 
 
where the y-intercept (α) is the index of basic contagion and the slope (β) is the 
density-contagiousness coefficient.  Finally, the minimum sample size for a 
prescribed level of precision can be calculated as 
 

( ) ( )[ ] 211 Dxn −++= βα                                   (4) 
 
Iwao and Kuno [8].  Having obtained n, Kuno’s stop boundary can be calculated: 
 

[ ] ( ) ( )[ ]( )nDTn 11 2
Kuno −−+= βα                              (5) 

 
where Tn[Kuno] is the cumulative number of individuals in samples 1 to n.  Finally, 
a sequential stop-chart is constructed by plotting Tn[Kuno] against n. 
     Green’s [3] stop boundary is analogous to Kuno’s, the major difference being 
that it uses Taylor’s Power Law (TPL) Taylor [9] to model the variance-mean 
relation.  TPL is 
 

bxas =2                                             (6) 
 
where s2 and x  are as described earlier, a is a scaling factor that is dependent on 
sampling method and habitat, and the exponent b is a measure of spatial 
contagion.  The parameters a and b can be estimated (i.e. â  and b̂ ) by 
regressing ln s2 against ln x : 
 

xbas lnˆˆlnln 2 +=                                          (7) 
 
Thus, replacing s2 in eqn. (1) with bxa ˆˆ  from eqns (5) and (6) we get  
 

( ) 22ˆˆ Dxan b−=                                               (8) 
 
Green’s [5] stop boundary can then be calculated as follows: 
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Figure 1: An enumerative sequential sampling chart for Helicoverpa spp. on 
fresh-market tomatoes (based on unpublished data of J.D. & C.M.). 

 
     Having obtained Tn[Green] it can be plotted against nmin to create a sequential 
sampling stop chart, as shown in fig. 1.  To use such a chart, or an analogous 
chart derived from Kuno’s method, one keeps track of the number of sampling 
units (plants in fig. 1) and the cumulative number of individuals (eggs in fig. 1) 
found.  Sampling ceases when the line defining this relationship intersects the 
stop boundary.  In fig. 1. the stepped-line is a hypothetical example to 
demonstrate how such a chart is used.  In this particular scenario, 40 plants were 
surveyed and a total of 180 eggs were recorded before sampling ceased. 

1.2 Binomial plans 

The most commonly used binomial sampling plan is Wald’s [10] sequential 
probability ratio test (SPRT), and this is the only binomial plan considered here.  
The SPRT comprises lower and upper stop boundaries, and sampling continues 
as long as one is between the two boundaries.  If the upper boundary is crossed, 
sampling ceases and the plan recommends implementing control.  Conversely, if 
the lower boundary is intersected, sampling stops and no control is taken.  The y-
intercepts for the lower and upper stop boundaries, h0 and h1 respectively, are 
calculated as follows: 
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        (10), (11) 
 
where θ0 and θ1 respectively represent the lower and upper bounds about the AT.  
In other words, θ0 is the threshold below which control is not required and θ1 is 
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the threshold above which control would be instigated.  The common slope, λ, 
for the two lines is given as 
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2 Setting the riskiness of a plan 

2.1 Enumerative plans 

Risk is accounted for in sequential sampling in a variety of ways.  First, consider 
the enumerative plan.  As seen in eqns (4, 5, 8, & 9), Kuno’s and Green’s plans 
require precision to be specified.  In both these instances we chose to describe it 
in terms of the ratio of the sample standard error to the sample mean.  Note that 
high D-values correspond to low levels of precision, and vice versa.  The choice 
of the nominal precision level is arbitrary.  Many have considered a D-value of 
0.2 to 0.3 to be practicable and reasonable for pest sampling in routine 
monitoring programs, Hamilton and Hepworth [11].  A D-value of 0.25 enables 
detection of either a halving or a doubling of the sample mean. 

2.2 Binomial plans 

Risk is attended to in binomial plans by setting the type I and II error rates (α and 
β respectively) and the lower and upper bounds about the AT (θ0 and θ1 
respectively).  The probability that a plan will suggest implementing control 
when it is not required (i.e. when θ ≤ AT) is represented by α, and β is the 
probability that no control is recommended when it is in fact needed (i.e. when θ 
> AT).  The choice of error rates is subjective, although 0.1 has often been used 
for both α and β, Binns [12], Burkness et al. [13].  Others have argued that in a 
pest control context β error is more serious (from the perspective of the primary 
producer at least), and thus should be set at a more conservative level than α, 
Hamilton et al. [14], Mo and Baker [15].  Increases in either α or β will see a 
concomitant increase in the probability of either an action or no action decision 
and a decrease in the likelihood of a no decision outcome. 
     Risk is accounted for in a more indirect way in binomial plans by setting the 
width of the region of indifference, i.e. the distance between θ0 and θ1.  This 
region about the AT (i.e. the width of the AT band) effectively represents the 
emphasis or importance one wishes to place on the exact value of the AT.  The 
derivation of ATs is often highly subjective and it may therefore be reasonable to 
apply some latitude.  Within the region of indifference we are not too concerned 
as to whether or not the crop is treated.  As with the error rates, setting θ0 and θ1 
is a somewhat subjective task.  Where the sampling unit is a plant, it may be 
reasonable to set the region as 5% plants infested either side of AT [15]. 
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3 Assessing the achieved riskiness of a plan 

3.1 Enumerative plans 

As described earlier, enumerative sequential sampling plans require precision to 
be set.  It cannot be assumed, however, that this nominal precision level will 
actually be realised upon implementation of the plan.  A useful way of assessing 
the achieved precision of a sampling plan is to statistically re-sample data-sets, 
Narajo and Hutchinson [16], Binns et al. [17].  We applied this approach to a D 
= 0.3 sampling plan for eggs of Helicoverpa spp. in fresh-market tomatoes 
(1,000 re-sampling iterations).  The achieved levels of precision varied 
substantially (fig. 3).  The mean achieved D across all data-sets (i.e. mean of all 
means of 1,000 iterations) was 0.32 (SD 0.14), with the minimum and maximum 
being 0.22 (SD 0.27) and 0.46 (SD 0.21) respectively.  In general, the plan failed 
to satisfy the nominal precision at densities of less than 0.2 eggs/plant, whereas it 
often over-performed at higher densities.  In this example the nominal and actual 
precision levels were close, on average.  But this may not always be the case, 
and validation of precision is a prudent step that should be undertaken in the 
development of a sampling plan. 

 
Figure 2: The mean (dots), minimum (light dashed line), and maximum (solid 

line) levels of precision (D) achieved over 1,000 re-sampling 
iterations when implementing a sampling plan for Helicoverpa on 
fresh-market tomatoes.  The heavy dashed line denotes the nominal 
level of precision (D = 0.3).  Based on unpublished data of J.D. & 
C.M. 
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3.2 Binomial plans 

The performance of binomial plans is typically assessed through the construction 
of operating characteristic (OC) and average sample number (ASN) curves.  The 
OC function describes the probability that the plan will not recommend control, 
and the ASN function calculates the mean number of samples required to satisfy 
the sequential sampling stop rule.  The OC of a perfect plan would be a stepwise 
function, as one would go from being 100% certain of the need to take action 
when above the AT (even if only by an infinitesimally small amount) to being 
100% certain that no action is required when the level of infestation is at or 
below the AT.  Thus, the steepness of the OC curve indicates the relative 
riskiness of the plan, where a steep slope implies a high-precision (and thus low 
risk) plan.  Hamilton et al. [14] used the slope parameter of a four-parameter 
sigmoidal model (fitted to OC data generated by re-sampling—see below) as the 
criterion for comparing the relative precision of plans.  The OC function can also 
be used to assess the level of conservativeness of a plan.  If the OC is < 0.5 at the 
AT then the plan is conservative, since at the AT it is more likely to recommend 
treatment than no treatment.  Conversely, it is anti-conservative if the OC > 0.5 
at the AT.  The ASN curve is also useful from a risk management perspective in 
that it enables one to assess the likelihood of having to collect large sample sizes, 
which is often an important logistical consideration. 
     The OC function (L(θ)) can be calculated according to Wald’s [10] theoretical 
equations, where: 
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( )[ ] ( ) ( )[ ] ( )θθ

θ

αβαβ
αβθ hh

h
L

−−−

−−
=

1/1
1/1)(

                           (13) 
 
where α and ß are the type I and II error rates, respectively, θ is a random 
variable of the population, which in the case of the binomial distribution (i.e. the 
distribution we are concerned with here) will represent the proportion of plants 
infested, and h(θ) is the non-zero solution for 
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when x is continuous (eqn 14) or discrete (eqn 15).  Fowler and Lynch [18] 
provide a useful iterative procedure for computing OC values whereby dummy-
values are set for h(θ).  They also explain how to attend to the special case where 
h(θ) = 0 (for OC and ASN curves).  The ASN function, Eθ(n), is calculated as 
follows: 
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     Construction of OC and ASN curves using Wald’s algorithms is tedious, and 
it assumes that the population can be adequately described by a statistical 
distribution and that the sampling process can also be explained by a theoretical 
distribution.  An alternative approach, developed by Naranjo and Hutchison [16], 
is to simulate sampling by re-sampling data-sets.  In this instance, the OC is 
more specifically defined as the proportion of re-sampling iterations for which 
the proportion of plants infested did not exceed the lower of the two sequential 
stop lines.  Similarly, the ASN represents the average number of samples (over 
all re-sampling iterations) that were collected before the stop-rule terminated 
sampling.  Wald’s OC and ASN algorithms are approximations as they do not 
account for overshooting of the decision boundaries.  Re-sampling circumvents 
this problem, and it can accommodate for a minimum sample size that must be 
collected each time—there are at present no published adjustments to Wald’s 
equations that do this.  A potentially significant pragmatic constraint of the re-
sampling method is that two independent data-sets are required, one to construct 
and one to validate the plan.  Also, the number and spread of data-points is 
important, so as to enable the fit of a sensible model. 
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Figure 3: OC and ASN curves caluclated using Wald’s algorithms (solid lines) 
and re-sampling (dashed).  The specifications of the plan are: α = 0.1, 
ß = 0.05, θ0 = 0.4 and θ1 = 0.6.  Dots and triangles represent the 
operating characteristic and mean sample size values respectively, 
calculated over 1,000 iterations, for data-sets of P. xylostella counts 
in broccoli fields (see [14]). 

 
     We determined OC and ASN curves for a binomial sampling plan for P. 
xylostella in broccoli crops (fig. 3).  Theoretical and re-sampling approaches 
were used.  The re-sampling-derived OC and ASN curves were obtained by 
fitting four-parameter sigmoidal and five-parameter Lorentzian models, 

© 2005 WIT Press WIT Transactions on Biomedicine and Health, Vol 9,
 www.witpress.com, ISSN 1743-3525 (on-line) 

18  Environmental Health Risk II



respectively, to the resampled data using SigmaPlot [19].  The models 
respectively explained > 99.9% and 97.3% of the variance).  The OC curves 
derived via theory and re-sampling were highly similar.  Both implied a slightly 
conservative plan.  There was a marked disparity between the ASN curves 
though, particularly around the AT (ASN at AT = 39.4 and 43.4), although such 
differences are unlikely to be of practical significance in this situation. 

4 Conclusion 

Sequential sampling offers a practical alternative to traditional high-power 
designs, and has particular applications in situations where phenomena are 
monitored on a routine basis and finances or time are limiting.  The premise of 
sequential sampling is that the minimum possible number of samples should be 
collected each time a population is surveyed.  As sample size decreases, 
however, confidence in our estimates of population parameters decreases, which 
plainly leads to an increase in the risk of making an inappropriate management 
decision.  Therefore, the level of risk one is prepared to take needs to be stated 
and incorporated into the sampling plan, which then needs to be validated to 
determine how well it performed with respect to the risk level we specified.  Risk 
is attended to enumerative plans through the concept of precision, and this can be 
assessed via re-sampling methods.  For binomial plans, risk is incorporated 
through type I and II error rates and the upper and lower bounds of the AT.  The 
performance of the plan can then be assessed through the construction of OC and 
ASN curves, which can be calculated theoretically or empirically. 

References 

[1] Hepworth, G. & McFarlane, J. R., Variance of the estimated population 
density from a presence-absence threshold sample. Journal of Economic 
Entomology, 85(6), pp. 2240–2245, 1992a. 

[2] Hepworth, G. & McFarlane, J. R., A systematic presence-absence 
sampling method applied to twospotted mite, Tetranychus utricae Koch 
(Acari: Tetranychidae) on strawberries in Victoria, Australia. Journal of 
Economic Entomology, 85(6), pp. 2234–2239, 1992b. 

[3] Karandinos, M.G., Optimal sample size and comments on some published 
formulae. Bulletin of the Entomological Society of America, 22(3), pp. 
417-421, 1976. 

[4] Kuno, E., A new method of sequential sampling to obtain population 
estimates with a fixed level of precision. Researches in Population 
Ecology, 11: pp. 127–136, 1969. 

[5] Green RH., On fixed precision level sequential sampling. Researches in 
Population Ecology, 12, pp. 249–251, 1970. 

[6] Iwao, S., A new regression method for analyzing the aggregation pattern 
of animal populations. Researches in Population Ecology, 10, pp. 1–20, 
1968. 

© 2005 WIT Press WIT Transactions on Biomedicine and Health, Vol 9,
 www.witpress.com, ISSN 1743-3525 (on-line) 

Environmental Health Risk II  19



[7] Lloyd, M., Mean Crowding. Journal of Animal Ecology, 36(1), pp. 1–30, 
1967. 

[8] Iwao, S. & Kuno, E., Use of regression of mean crowding on mean 
density for estimating sample size and the transformation of data for the 
analysis of variance. Researches in Population Ecology, 10, pp. 210–214, 
1968. 

[9] Taylor, L.R., Aggregation, variance and the mean. Nature, 189(4766), pp. 
732–735, 1961. 

[10] Wald, A.,  Sequential analysis, John Wiley and Sons: Dover, NY, 1947. 
[11] Hamilton, A.J. & Hepworth, G., Accounting for cluster sampling in 

constructing enumerative sequential sampling plans. Journal of Economic 
Entomology, 97(3), pp. 1132–1136, 2004. 

[12] Binns, M. R. Sequential sampling for classifying pest status (Chapter 8). 
CRC Handbook of Sampling Methods for Arthropods in Agriculture, eds. 
L.P. Pedigo & G.D. Buntin,CRC Press: Boca Raton, pp.137-174, 1994. 

[13] Burkness, E. C., Venette, R. C., O'Rourke, P. K., & Hutchinson, W. D., 
Binomial sequential sampling for management of aster Leafhopper 
(Homoptera: Cicadellidae) and Aster Yellows phytoplasma in Carrot: 
impact of Tally Threshold on the accuracy of treatment decisions. 
Environmental Entomology, 28(5), pp. 851-857, 1999. 

[14] Hamilton, A.J., Schellhorn, N.A., Ridland, P.M., Endersby, N.E. & Ward, 
S.A., A dynamic binomial sequential sampling plan for diamondback 
moth, Plutella xylostella. Journal of Economic Entomology, 97(1), pp. 
127–135, 2004. 

[15] Mo, J. & Baker, G., Evaluation of sequential presence-absence sampling 
plans for diamondback moth (Plutellidae: Lepidoptera) in cruciferous 
crops in Australia. Journal of Economic Entomology, 97(3), pp. 1118–
1125, 2004. 

[16] Naranjo, S. E. & Hutchinson, W. D., Validation of arthropod sampling 
plans using a resampling approach: software and analysis. American 
Entomologist, Spring, pp. 48-57, 1997. 

[17] Binns, M.R., Nyrop, J.P. & van Der Werf, W., Resampling to evaluate the 
properties of sampling plans (Chapter 9). Sampling and monitoring in 
crop protection, CABI Publishing: Oxon and New York, pp. 205–226, 
2000. 

[18] Fowler, G. W., & Lynch A. M., Sampling plans in insect pest 
management based on Wald’s sequential probability ratio test. 
Environmental Entomology, 16(2), pp. 345–354, 1987. 

[19] SigmaPlot 2002 for Windows Version 8.02a, Systat Software, Inc. 

© 2005 WIT Press WIT Transactions on Biomedicine and Health, Vol 9,
 www.witpress.com, ISSN 1743-3525 (on-line) 

20  Environmental Health Risk II


